Solvability of the stationary Stokes system in spaces $H_{-\mu }^2$, $\mu \in (0,1)$
Applicationes Mathematicae, Tome 37 (2010) no. 1, pp. 13-38
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider the stationary Stokes system with slip boundary conditions in a bounded domain. Assuming that data functions belong to weighted Sobolev spaces with weights equal to some power of the distance to some distinguished axis, we prove the existence of solutions to the problem in appropriate weighted Sobolev spaces.
Keywords:
consider stationary stokes system slip boundary conditions bounded domain assuming functions belong weighted sobolev spaces weights equal power distance distinguished axis prove existence solutions problem appropriate weighted sobolev spaces
Affiliations des auteurs :
Ewa Zadrzyńska 1 ; Wojciech M. Zajączkowski 2
@article{10_4064_am37_1_2,
author = {Ewa Zadrzy\'nska and Wojciech M. Zaj\k{a}czkowski},
title = {Solvability of the stationary {Stokes} system in spaces $H_{-\mu }^2$, $\mu \in (0,1)$},
journal = {Applicationes Mathematicae},
pages = {13--38},
year = {2010},
volume = {37},
number = {1},
doi = {10.4064/am37-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am37-1-2/}
}
TY - JOUR
AU - Ewa Zadrzyńska
AU - Wojciech M. Zajączkowski
TI - Solvability of the stationary Stokes system in spaces $H_{-\mu }^2$, $\mu \in (0,1)$
JO - Applicationes Mathematicae
PY - 2010
SP - 13
EP - 38
VL - 37
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/am37-1-2/
DO - 10.4064/am37-1-2
LA - en
ID - 10_4064_am37_1_2
ER -
%0 Journal Article
%A Ewa Zadrzyńska
%A Wojciech M. Zajączkowski
%T Solvability of the stationary Stokes system in spaces $H_{-\mu }^2$, $\mu \in (0,1)$
%J Applicationes Mathematicae
%D 2010
%P 13-38
%V 37
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/am37-1-2/
%R 10.4064/am37-1-2
%G en
%F 10_4064_am37_1_2
Ewa Zadrzyńska; Wojciech M. Zajączkowski. Solvability of the stationary Stokes system in spaces $H_{-\mu }^2$, $\mu \in (0,1)$. Applicationes Mathematicae, Tome 37 (2010) no. 1, pp. 13-38. doi: 10.4064/am37-1-2
Cité par Sources :