Existence of solutions to the Poisson equation in $L_p$-weighted spaces
Applicationes Mathematicae, Tome 37 (2010) no. 1, pp. 1-12
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We examine the Poisson equation with boundary conditions on a cylinder in a weighted space of $L_p$, $ p\geq 3$, type. The weight is a positive power of the distance from a distinguished plane. To prove the existence of solutions we use our result on existence in a weighted $L_2$ space.
Keywords:
examine poisson equation boundary conditions cylinder weighted space geq type weight positive power distance distinguished plane prove existence solutions result existence weighted space
Affiliations des auteurs :
Joanna Rencławowicz 1 ; Wojciech M. Zajączkowski 2
@article{10_4064_am37_1_1,
author = {Joanna Renc{\l}awowicz and Wojciech M. Zaj\k{a}czkowski},
title = {Existence of solutions to the {Poisson} equation in $L_p$-weighted spaces},
journal = {Applicationes Mathematicae},
pages = {1--12},
year = {2010},
volume = {37},
number = {1},
doi = {10.4064/am37-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am37-1-1/}
}
TY - JOUR AU - Joanna Rencławowicz AU - Wojciech M. Zajączkowski TI - Existence of solutions to the Poisson equation in $L_p$-weighted spaces JO - Applicationes Mathematicae PY - 2010 SP - 1 EP - 12 VL - 37 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/am37-1-1/ DO - 10.4064/am37-1-1 LA - en ID - 10_4064_am37_1_1 ER -
%0 Journal Article %A Joanna Rencławowicz %A Wojciech M. Zajączkowski %T Existence of solutions to the Poisson equation in $L_p$-weighted spaces %J Applicationes Mathematicae %D 2010 %P 1-12 %V 37 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/am37-1-1/ %R 10.4064/am37-1-1 %G en %F 10_4064_am37_1_1
Joanna Rencławowicz; Wojciech M. Zajączkowski. Existence of solutions to the Poisson equation in $L_p$-weighted spaces. Applicationes Mathematicae, Tome 37 (2010) no. 1, pp. 1-12. doi: 10.4064/am37-1-1
Cité par Sources :