A convergence analysis of Newton's method under the gamma-condition in Banach spaces
Applicationes Mathematicae, Tome 36 (2009) no. 2, pp. 225-239.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We provide a local as well as a semilocal convergence analysis for Newton's method to approximate a locally unique solution of an equation in a Banach space setting. Using a combination of center-gamma with a gamma-condition, we obtain an upper bound on the inverses of the operators involved which can be more precise than those given in the elegant works by Smale, Wang, and Zhao and Wang. This observation leads (under the same or less computational cost) to a convergence analysis with the following advantages: local case: larger radius of convergence and finer error estimates on the distances involved; semilocal case: larger domain of convergence, finer error bounds on the distances involved, and at least as precise information on the location of the solution.
DOI : 10.4064/am36-2-9
Keywords: provide local semilocal convergence analysis newtons method approximate locally unique solution equation banach space setting using combination center gamma gamma condition obtain upper bound inverses operators involved which precise those given elegant works smale wang zhao wang observation leads under computational cost convergence analysis following advantages local larger radius convergence finer error estimates distances involved semilocal larger domain convergence finer error bounds distances involved least precise information location solution

Ioannis K. Argyros 1

1 Department of Mathematical Sciences Cameron University Lawton, OK 73505, U.S.A.
@article{10_4064_am36_2_9,
     author = {Ioannis K. Argyros},
     title = {A convergence analysis of {Newton's} method
 under the gamma-condition in {Banach} spaces},
     journal = {Applicationes Mathematicae},
     pages = {225--239},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2009},
     doi = {10.4064/am36-2-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am36-2-9/}
}
TY  - JOUR
AU  - Ioannis K. Argyros
TI  - A convergence analysis of Newton's method
 under the gamma-condition in Banach spaces
JO  - Applicationes Mathematicae
PY  - 2009
SP  - 225
EP  - 239
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am36-2-9/
DO  - 10.4064/am36-2-9
LA  - en
ID  - 10_4064_am36_2_9
ER  - 
%0 Journal Article
%A Ioannis K. Argyros
%T A convergence analysis of Newton's method
 under the gamma-condition in Banach spaces
%J Applicationes Mathematicae
%D 2009
%P 225-239
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am36-2-9/
%R 10.4064/am36-2-9
%G en
%F 10_4064_am36_2_9
Ioannis K. Argyros. A convergence analysis of Newton's method
 under the gamma-condition in Banach spaces. Applicationes Mathematicae, Tome 36 (2009) no. 2, pp. 225-239. doi : 10.4064/am36-2-9. http://geodesic.mathdoc.fr/articles/10.4064/am36-2-9/

Cité par Sources :