A uniform central limit theorem for dependent variables
Applicationes Mathematicae, Tome 36 (2009) no. 2, pp. 129-138.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Niemiro and Zieliński (2007) have recently obtained uniform asymptotic normality for the Bernoulli scheme. This paper concerns a similar problem. We show the uniform central limit theorem for a sequence of stationary random variables.
DOI : 10.4064/am36-2-1
Keywords: niemiro zieli ski have recently obtained uniform asymptotic normality bernoulli scheme paper concerns similar problem uniform central limit theorem sequence stationary random variables

Konrad Furma/nczyk 1

1 Department of Applied Mathematics Faculty of Applied Informatics and Mathematics Warsaw University of Life Sciences (SGGW) Nowoursynowska 159 02-776 Warszawa, Poland
@article{10_4064_am36_2_1,
     author = {Konrad Furma/nczyk},
     title = {A uniform central limit theorem
 for dependent variables},
     journal = {Applicationes Mathematicae},
     pages = {129--138},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2009},
     doi = {10.4064/am36-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am36-2-1/}
}
TY  - JOUR
AU  - Konrad Furma/nczyk
TI  - A uniform central limit theorem
 for dependent variables
JO  - Applicationes Mathematicae
PY  - 2009
SP  - 129
EP  - 138
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am36-2-1/
DO  - 10.4064/am36-2-1
LA  - en
ID  - 10_4064_am36_2_1
ER  - 
%0 Journal Article
%A Konrad Furma/nczyk
%T A uniform central limit theorem
 for dependent variables
%J Applicationes Mathematicae
%D 2009
%P 129-138
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am36-2-1/
%R 10.4064/am36-2-1
%G en
%F 10_4064_am36_2_1
Konrad Furma/nczyk. A uniform central limit theorem
 for dependent variables. Applicationes Mathematicae, Tome 36 (2009) no. 2, pp. 129-138. doi : 10.4064/am36-2-1. http://geodesic.mathdoc.fr/articles/10.4064/am36-2-1/

Cité par Sources :