Existence of solutions to the $({\rm rot},{\rm div})$-system in $L_2$-weighted
spaces
Applicationes Mathematicae, Tome 36 (2009) no. 1, pp. 83-106
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The existence of solutions to the elliptic problem $\textrm{ rot } v=w$,
$\textrm{div } v=0$ in
${\mit\Omega}\subset\Bbb R^3$, $v\cdot\overline n|_S=0$, $S=\partial\mit\Omega$,
in weighted
Hilbert spaces is proved. It is assumed that $\mit\Omega$ contains an
axis $L$ and the weight is a negative power of the distance to the
axis. The main part of the proof is devoted to examining solutions
in a neighbourhood of $L$. Their existence in $\mit\Omega$ follows by
regularization.
Keywords:
existence solutions elliptic problem textrm rot textrm div mit omega subset bbb cdot overline partial mit omega weighted hilbert spaces proved assumed mit omega contains axis weight negative power distance axis main part proof devoted examining solutions neighbourhood their existence mit omega follows regularization
Affiliations des auteurs :
Wojciech M. Zaj/aczkowski 1
@article{10_4064_am36_1_7,
author = {Wojciech M. Zaj/aczkowski},
title = {Existence of solutions to the $({\rm rot},{\rm div})$-system in $L_2$-weighted
spaces},
journal = {Applicationes Mathematicae},
pages = {83--106},
year = {2009},
volume = {36},
number = {1},
doi = {10.4064/am36-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am36-1-7/}
}
TY - JOUR
AU - Wojciech M. Zaj/aczkowski
TI - Existence of solutions to the $({\rm rot},{\rm div})$-system in $L_2$-weighted
spaces
JO - Applicationes Mathematicae
PY - 2009
SP - 83
EP - 106
VL - 36
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/am36-1-7/
DO - 10.4064/am36-1-7
LA - en
ID - 10_4064_am36_1_7
ER -
Wojciech M. Zaj/aczkowski. Existence of solutions to the $({\rm rot},{\rm div})$-system in $L_2$-weighted
spaces. Applicationes Mathematicae, Tome 36 (2009) no. 1, pp. 83-106. doi: 10.4064/am36-1-7
Cité par Sources :