On the Newton–Kantorovich theorem and
nonlinear finite element methods
Applicationes Mathematicae, Tome 36 (2009) no. 1, pp. 75-81
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Using a weaker version of the Newton–Kantorovich theorem, we provide a discretization result to find finite element solutions of elliptic boundary value problems. Our hypotheses are weaker and under the same computational cost lead to finer estimates on the distances involved and a more precise information on the location of the solution than before.
Keywords:
using weaker version newton kantorovich theorem provide discretization result finite element solutions elliptic boundary value problems hypotheses weaker under computational cost lead finer estimates distances involved precise information location solution before
Affiliations des auteurs :
Ioannis K. Argyros  1
@article{10_4064_am36_1_6,
author = {Ioannis K. Argyros},
title = {On the {Newton{\textendash}Kantorovich} theorem and
nonlinear finite element methods},
journal = {Applicationes Mathematicae},
pages = {75--81},
year = {2009},
volume = {36},
number = {1},
doi = {10.4064/am36-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am36-1-6/}
}
Ioannis K. Argyros. On the Newton–Kantorovich theorem and nonlinear finite element methods. Applicationes Mathematicae, Tome 36 (2009) no. 1, pp. 75-81. doi: 10.4064/am36-1-6
Cité par Sources :