Semi-Markov control processes with
non-compact action spaces and
discontinuous costs
Applicationes Mathematicae, Tome 36 (2009) no. 1, pp. 29-42
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We establish the average cost optimality equation and show the existence of an ($\varepsilon $-)optimal stationary policy for semi-Markov control processes without compactness and continuity assumptions. The only condition we impose on the model is the $V$-geometric ergodicity of the embedded Markov chain governed by a stationary policy.
Keywords:
establish average cost optimality equation existence varepsilon optimal stationary policy semi markov control processes without compactness continuity assumptions only condition impose model v geometric ergodicity embedded markov chain governed stationary policy
Affiliations des auteurs :
Anna Ja/skiewicz 1
@article{10_4064_am36_1_3,
author = {Anna Ja/skiewicz},
title = {Semi-Markov control processes with
non-compact action spaces and
discontinuous costs},
journal = {Applicationes Mathematicae},
pages = {29--42},
year = {2009},
volume = {36},
number = {1},
doi = {10.4064/am36-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am36-1-3/}
}
TY - JOUR AU - Anna Ja/skiewicz TI - Semi-Markov control processes with non-compact action spaces and discontinuous costs JO - Applicationes Mathematicae PY - 2009 SP - 29 EP - 42 VL - 36 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/am36-1-3/ DO - 10.4064/am36-1-3 LA - en ID - 10_4064_am36_1_3 ER -
Anna Ja/skiewicz. Semi-Markov control processes with non-compact action spaces and discontinuous costs. Applicationes Mathematicae, Tome 36 (2009) no. 1, pp. 29-42. doi: 10.4064/am36-1-3
Cité par Sources :