The balayage method: boundary control of a thermo-elastic plate
Applicationes Mathematicae, Tome 35 (2008) no. 4, pp. 467-479.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We discuss the null boundary controllability of a linear thermo-elastic plate. The method employs a smoothing property of the system of PDEs which allows the boundary controls to be calculated directly by solving two Cauchy problems.
DOI : 10.4064/am35-4-5
Keywords: discuss null boundary controllability linear thermo elastic plate method employs smoothing property system pdes which allows boundary controls calculated directly solving cauchy problems

Walter Littman 1 ; Stephen Taylor 2

1 School of Mathematics University of Minnesota Minneapolis, MN 55455, U.S.A.
2 Mathematics Department The University of Auckland Private Bag 92019 Auckland, New Zealand
@article{10_4064_am35_4_5,
     author = {Walter Littman and Stephen Taylor},
     title = {The balayage method: boundary control of a
 thermo-elastic plate},
     journal = {Applicationes Mathematicae},
     pages = {467--479},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {2008},
     doi = {10.4064/am35-4-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am35-4-5/}
}
TY  - JOUR
AU  - Walter Littman
AU  - Stephen Taylor
TI  - The balayage method: boundary control of a
 thermo-elastic plate
JO  - Applicationes Mathematicae
PY  - 2008
SP  - 467
EP  - 479
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am35-4-5/
DO  - 10.4064/am35-4-5
LA  - en
ID  - 10_4064_am35_4_5
ER  - 
%0 Journal Article
%A Walter Littman
%A Stephen Taylor
%T The balayage method: boundary control of a
 thermo-elastic plate
%J Applicationes Mathematicae
%D 2008
%P 467-479
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am35-4-5/
%R 10.4064/am35-4-5
%G en
%F 10_4064_am35_4_5
Walter Littman; Stephen Taylor. The balayage method: boundary control of a
 thermo-elastic plate. Applicationes Mathematicae, Tome 35 (2008) no. 4, pp. 467-479. doi : 10.4064/am35-4-5. http://geodesic.mathdoc.fr/articles/10.4064/am35-4-5/

Cité par Sources :