Asymptotic dynamics in double-diffusive convection
Applicationes Mathematicae, Tome 35 (2008) no. 2, pp. 223-245.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the double-diffusive convection phenomenon and analyze the governing equations. A system of partial differential equations describing the convective flow arising when a layer of fluid with a dissolved solute is heated from below is considered. The problem is placed in a functional analytic setting in order to prove a theorem on existence, uniqueness and continuous dependence on initial data of weak solutions in the class $\mathcal{C}([0,\infty); H) \cap L^2_{\rm loc}(\mathbb{R}^+;V)$. This theorem enables us to show that the infinite-dimensional dynamical system generated by the double-diffusive convection equations has a global attractor on which the long-term dynamics of solutions is focused.
DOI : 10.4064/am35-2-7
Keywords: consider double diffusive convection phenomenon analyze governing equations system partial differential equations describing convective flow arising layer fluid dissolved solute heated below considered problem placed functional analytic setting order prove theorem existence uniqueness continuous dependence initial weak solutions class mathcal infty cap loc mathbb theorem enables infinite dimensional dynamical system generated double diffusive convection equations has global attractor which long term dynamics solutions focused

Miko/laj Piniewski 1

1 Institute of Applied Mathematics and Mechanics University of Warsaw Banacha 2 02-097 Warszawa, Poland and Department of Hydraulic Engineering and Environmental Restoration Warsaw University of Life Sciences Nowoursynowska 159 02-787 Warszawa, Poland
@article{10_4064_am35_2_7,
     author = {Miko/laj Piniewski},
     title = {Asymptotic dynamics in double-diffusive convection},
     journal = {Applicationes Mathematicae},
     pages = {223--245},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2008},
     doi = {10.4064/am35-2-7},
     zbl = {1149.35327},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am35-2-7/}
}
TY  - JOUR
AU  - Miko/laj Piniewski
TI  - Asymptotic dynamics in double-diffusive convection
JO  - Applicationes Mathematicae
PY  - 2008
SP  - 223
EP  - 245
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am35-2-7/
DO  - 10.4064/am35-2-7
LA  - en
ID  - 10_4064_am35_2_7
ER  - 
%0 Journal Article
%A Miko/laj Piniewski
%T Asymptotic dynamics in double-diffusive convection
%J Applicationes Mathematicae
%D 2008
%P 223-245
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am35-2-7/
%R 10.4064/am35-2-7
%G en
%F 10_4064_am35_2_7
Miko/laj Piniewski. Asymptotic dynamics in double-diffusive convection. Applicationes Mathematicae, Tome 35 (2008) no. 2, pp. 223-245. doi : 10.4064/am35-2-7. http://geodesic.mathdoc.fr/articles/10.4064/am35-2-7/

Cité par Sources :