Blow-up of the solution to the initial-value problem in nonlinear three-dimensional hyperelasticity
Applicationes Mathematicae, Tome 35 (2008) no. 2, pp. 193-208.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the initial value problem for the nonlinear partial differential equations describing the motion of an inhomogeneous and anisotropic hyperelastic medium. We assume that the stored energy function of the hyperelastic material is a function of the point $x$ and the nonlinear Green–St. Venant strain tensor $e_{jk}$. Moreover, we assume that the stored energy function is $C^\infty $ with respect to $x$ and $e_{jk}$. In our description we assume that Piola–Kirchhoff's stress tensor $p_{jk}$ depends on the tensor $e_{jk}$. This means that we consider the so-called physically nonlinear hyperelasticity theory. We prove (local in time) existence and uniqueness of a smooth solution to this initial value problem. Under the assumption about the stored energy function of the hyperelastic material, we prove the blow-up of the solution in finite time.
DOI : 10.4064/am35-2-5
Keywords: consider initial value problem nonlinear partial differential equations describing motion inhomogeneous anisotropic hyperelastic medium assume stored energy function hyperelastic material function point nonlinear green venant strain tensor moreover assume stored energy function infty respect description assume piola kirchhoffs stress tensor depends tensor means consider so called physically nonlinear hyperelasticity theory prove local time existence uniqueness smooth solution initial value problem under assumption about stored energy function hyperelastic material prove blow up solution finite time

J. A. Gawinecki 1 ; P. Kacprzyk 1

1 Institute of Mathematics and Cryptology Faculty of Cybernetics Military University of Technology Kaliskiego 2 00-908 Warszawa 49, Poland
@article{10_4064_am35_2_5,
     author = {J. A. Gawinecki and P. Kacprzyk},
     title = {Blow-up of the solution to
 the initial-value problem in nonlinear
 three-dimensional hyperelasticity},
     journal = {Applicationes Mathematicae},
     pages = {193--208},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2008},
     doi = {10.4064/am35-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am35-2-5/}
}
TY  - JOUR
AU  - J. A. Gawinecki
AU  - P. Kacprzyk
TI  - Blow-up of the solution to
 the initial-value problem in nonlinear
 three-dimensional hyperelasticity
JO  - Applicationes Mathematicae
PY  - 2008
SP  - 193
EP  - 208
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am35-2-5/
DO  - 10.4064/am35-2-5
LA  - en
ID  - 10_4064_am35_2_5
ER  - 
%0 Journal Article
%A J. A. Gawinecki
%A P. Kacprzyk
%T Blow-up of the solution to
 the initial-value problem in nonlinear
 three-dimensional hyperelasticity
%J Applicationes Mathematicae
%D 2008
%P 193-208
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am35-2-5/
%R 10.4064/am35-2-5
%G en
%F 10_4064_am35_2_5
J. A. Gawinecki; P. Kacprzyk. Blow-up of the solution to
 the initial-value problem in nonlinear
 three-dimensional hyperelasticity. Applicationes Mathematicae, Tome 35 (2008) no. 2, pp. 193-208. doi : 10.4064/am35-2-5. http://geodesic.mathdoc.fr/articles/10.4064/am35-2-5/

Cité par Sources :