Nonhomogeneous boundary value problem for a semilinear hyperbolic equation
Applicationes Mathematicae, Tome 35 (2008) no. 1, pp. 81-95.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We discuss the solvability of a nonhomogeneous boundary value problem for the semilinear equation of the vibrating string $x_{tt}(t,y)-\Delta x(t,y)+f(t,y,x(t,y))=0$ in a bounded domain and with a certain type of superlinear nonlinearity. To this end we derive a new dual variational method.
DOI : 10.4064/am35-1-5
Keywords: discuss solvability nonhomogeneous boundary value problem semilinear equation vibrating string delta x bounded domain certain type superlinear nonlinearity end derive dual variational method

Andrzej Nowakowski 1

1 Faculty of Mathematics University of /L/od/x Banacha 22 90-238 /L/od/x, Poland
@article{10_4064_am35_1_5,
     author = {Andrzej Nowakowski},
     title = {Nonhomogeneous boundary value problem for
 a semilinear hyperbolic equation},
     journal = {Applicationes Mathematicae},
     pages = {81--95},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2008},
     doi = {10.4064/am35-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am35-1-5/}
}
TY  - JOUR
AU  - Andrzej Nowakowski
TI  - Nonhomogeneous boundary value problem for
 a semilinear hyperbolic equation
JO  - Applicationes Mathematicae
PY  - 2008
SP  - 81
EP  - 95
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am35-1-5/
DO  - 10.4064/am35-1-5
LA  - en
ID  - 10_4064_am35_1_5
ER  - 
%0 Journal Article
%A Andrzej Nowakowski
%T Nonhomogeneous boundary value problem for
 a semilinear hyperbolic equation
%J Applicationes Mathematicae
%D 2008
%P 81-95
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am35-1-5/
%R 10.4064/am35-1-5
%G en
%F 10_4064_am35_1_5
Andrzej Nowakowski. Nonhomogeneous boundary value problem for
 a semilinear hyperbolic equation. Applicationes Mathematicae, Tome 35 (2008) no. 1, pp. 81-95. doi : 10.4064/am35-1-5. http://geodesic.mathdoc.fr/articles/10.4064/am35-1-5/

Cité par Sources :