Nonhomogeneous boundary value problem for
a semilinear hyperbolic equation
Applicationes Mathematicae, Tome 35 (2008) no. 1, pp. 81-95
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We discuss the solvability of a nonhomogeneous boundary
value problem for the semilinear equation of the vibrating string
$x_{tt}(t,y)-\Delta x(t,y)+f(t,y,x(t,y))=0$ in a bounded domain and
with a certain type of superlinear nonlinearity.
To this end we derive a new dual variational method.
Keywords:
discuss solvability nonhomogeneous boundary value problem semilinear equation vibrating string delta x bounded domain certain type superlinear nonlinearity end derive dual variational method
Affiliations des auteurs :
Andrzej Nowakowski 1
@article{10_4064_am35_1_5,
author = {Andrzej Nowakowski},
title = {Nonhomogeneous boundary value problem for
a semilinear hyperbolic equation},
journal = {Applicationes Mathematicae},
pages = {81--95},
year = {2008},
volume = {35},
number = {1},
doi = {10.4064/am35-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am35-1-5/}
}
TY - JOUR AU - Andrzej Nowakowski TI - Nonhomogeneous boundary value problem for a semilinear hyperbolic equation JO - Applicationes Mathematicae PY - 2008 SP - 81 EP - 95 VL - 35 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/am35-1-5/ DO - 10.4064/am35-1-5 LA - en ID - 10_4064_am35_1_5 ER -
Andrzej Nowakowski. Nonhomogeneous boundary value problem for a semilinear hyperbolic equation. Applicationes Mathematicae, Tome 35 (2008) no. 1, pp. 81-95. doi: 10.4064/am35-1-5
Cité par Sources :