Inviscid limit for the 2-D stationary
Euler system with arbitrary force
in simply connected domains
Applicationes Mathematicae, Tome 35 (2008) no. 1, pp. 49-67
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study the convergence in the vanishing viscosity limit of the stationary incompressible Navier–Stokes equation towards the stationary Euler equation, in the presence of an arbitrary force term. This requires that the fluid is allowed to pass through some open part of the boundary.
Keywords:
study convergence vanishing viscosity limit stationary incompressible navier stokes equation towards stationary euler equation presence arbitrary force term requires fluid allowed pass through part boundary
Affiliations des auteurs :
Olivier Glass 1 ; Piotr Bogus/law Mucha 2
@article{10_4064_am35_1_3,
author = {Olivier Glass and Piotr Bogus/law Mucha},
title = {Inviscid limit for the {2-D} stationary
{Euler} system with arbitrary force
in simply connected domains},
journal = {Applicationes Mathematicae},
pages = {49--67},
year = {2008},
volume = {35},
number = {1},
doi = {10.4064/am35-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am35-1-3/}
}
TY - JOUR AU - Olivier Glass AU - Piotr Bogus/law Mucha TI - Inviscid limit for the 2-D stationary Euler system with arbitrary force in simply connected domains JO - Applicationes Mathematicae PY - 2008 SP - 49 EP - 67 VL - 35 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/am35-1-3/ DO - 10.4064/am35-1-3 LA - en ID - 10_4064_am35_1_3 ER -
%0 Journal Article %A Olivier Glass %A Piotr Bogus/law Mucha %T Inviscid limit for the 2-D stationary Euler system with arbitrary force in simply connected domains %J Applicationes Mathematicae %D 2008 %P 49-67 %V 35 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/am35-1-3/ %R 10.4064/am35-1-3 %G en %F 10_4064_am35_1_3
Olivier Glass; Piotr Bogus/law Mucha. Inviscid limit for the 2-D stationary Euler system with arbitrary force in simply connected domains. Applicationes Mathematicae, Tome 35 (2008) no. 1, pp. 49-67. doi: 10.4064/am35-1-3
Cité par Sources :