Inviscid limit for the 2-D stationary Euler system with arbitrary force in simply connected domains
Applicationes Mathematicae, Tome 35 (2008) no. 1, pp. 49-67.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the convergence in the vanishing viscosity limit of the stationary incompressible Navier–Stokes equation towards the stationary Euler equation, in the presence of an arbitrary force term. This requires that the fluid is allowed to pass through some open part of the boundary.
DOI : 10.4064/am35-1-3
Keywords: study convergence vanishing viscosity limit stationary incompressible navier stokes equation towards stationary euler equation presence arbitrary force term requires fluid allowed pass through part boundary

Olivier Glass 1 ; Piotr Bogus/law Mucha 2

1 UMR 7598 Laboratoire Jacques-Louis Lions CNRS et UPMC Paris 6 F-75005 Paris, France
2 Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Banacha 2 02-097 Warszawa, Poland
@article{10_4064_am35_1_3,
     author = {Olivier Glass and Piotr Bogus/law Mucha},
     title = {Inviscid limit for the {2-D} stationary
 {Euler} system with arbitrary force
 in simply connected domains},
     journal = {Applicationes Mathematicae},
     pages = {49--67},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2008},
     doi = {10.4064/am35-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am35-1-3/}
}
TY  - JOUR
AU  - Olivier Glass
AU  - Piotr Bogus/law Mucha
TI  - Inviscid limit for the 2-D stationary
 Euler system with arbitrary force
 in simply connected domains
JO  - Applicationes Mathematicae
PY  - 2008
SP  - 49
EP  - 67
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am35-1-3/
DO  - 10.4064/am35-1-3
LA  - en
ID  - 10_4064_am35_1_3
ER  - 
%0 Journal Article
%A Olivier Glass
%A Piotr Bogus/law Mucha
%T Inviscid limit for the 2-D stationary
 Euler system with arbitrary force
 in simply connected domains
%J Applicationes Mathematicae
%D 2008
%P 49-67
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am35-1-3/
%R 10.4064/am35-1-3
%G en
%F 10_4064_am35_1_3
Olivier Glass; Piotr Bogus/law Mucha. Inviscid limit for the 2-D stationary
 Euler system with arbitrary force
 in simply connected domains. Applicationes Mathematicae, Tome 35 (2008) no. 1, pp. 49-67. doi : 10.4064/am35-1-3. http://geodesic.mathdoc.fr/articles/10.4064/am35-1-3/

Cité par Sources :