Finite-dimensionality of 2-D micropolar fluid
flow with periodic boundary conditions
Applicationes Mathematicae, Tome 34 (2007) no. 3, pp. 309-339
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
This paper is devoted to proving the finite-dimensionality of a two-dimensional micropolar fluid flow with periodic boundary conditions. We define the notions of determining modes and nodes and estimate their number. We check how the distribution of the forces and moments through modes influences the estimate of the number of determining modes. We also estimate the dimension of the global attractor. Finally, we compare our results with analogous results for the Navier–Stokes equation.
Keywords:
paper devoted proving finite dimensionality two dimensional micropolar fluid flow periodic boundary conditions define notions determining modes nodes estimate their number check distribution forces moments through modes influences estimate number determining modes estimate dimension global attractor finally compare results analogous results navier stokes equation
Affiliations des auteurs :
Piotr Szopa 1
@article{10_4064_am34_3_4,
author = {Piotr Szopa},
title = {Finite-dimensionality of {2-D} micropolar fluid
flow with periodic boundary conditions},
journal = {Applicationes Mathematicae},
pages = {309--339},
publisher = {mathdoc},
volume = {34},
number = {3},
year = {2007},
doi = {10.4064/am34-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am34-3-4/}
}
TY - JOUR AU - Piotr Szopa TI - Finite-dimensionality of 2-D micropolar fluid flow with periodic boundary conditions JO - Applicationes Mathematicae PY - 2007 SP - 309 EP - 339 VL - 34 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/am34-3-4/ DO - 10.4064/am34-3-4 LA - en ID - 10_4064_am34_3_4 ER -
Piotr Szopa. Finite-dimensionality of 2-D micropolar fluid flow with periodic boundary conditions. Applicationes Mathematicae, Tome 34 (2007) no. 3, pp. 309-339. doi: 10.4064/am34-3-4
Cité par Sources :