Local well-posedness of the Cauchy problem for the generalized Camassa–Holm equation in Besov spaces
Applicationes Mathematicae, Tome 34 (2007) no. 3, pp. 253-267.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study local well-posedness of the Cauchy problem for the generalized Camassa–Holm equation $\partial_{t}u-\partial^{3}_{txx}u+2\kappa\partial_{x}u+\partial_{x}[{g(u)}/{2}] =\gamma(2\partial_{x}u\partial^{2}_{xx}u+u\partial^{3}_{xxx}u)$ for the initial data $u_{0}(x)$ in the Besov space $B^{s}_{p,r}(\Bbb R)$ with $\max({3}/{2},1 +{1}/{p}) s\leq m$ and $(p,r)\in [1,\infty]^{2}$, where $g:\Bbb R\rightarrow\Bbb R$ is a given $C^{m}$-function ($m\geq 4$) with $g(0)=g'(0)=0$, and $\kappa\geq 0$ and $\gamma\in \Bbb R$ are fixed constants. Using estimates for the transport equation in the framework of Besov spaces, compactness arguments and Littlewood–Paley theory, we get a local well-posedness result.
DOI : 10.4064/am34-3-1
Keywords: study local well posedness cauchy problem generalized camassa holm equation partial u partial txx kappa partial partial gamma partial partial partial xxx initial besov space bbb max leq infty where bbb rightarrow bbb given function geq kappa geq gamma bbb fixed constants using estimates transport equation framework besov spaces compactness arguments littlewood paley theory get local well posedness result

Gang Wu 1 ; Jia Yuan 1

1 The Graduate School of China Academy of Engineering Physics P.O. Box 2101, Beijing 100088, China
@article{10_4064_am34_3_1,
     author = {Gang Wu and Jia Yuan},
     title = {Local well-posedness of the {Cauchy} problem 
for the generalized {Camassa{\textendash}Holm} equation in {Besov} spaces},
     journal = {Applicationes Mathematicae},
     pages = {253--267},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2007},
     doi = {10.4064/am34-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am34-3-1/}
}
TY  - JOUR
AU  - Gang Wu
AU  - Jia Yuan
TI  - Local well-posedness of the Cauchy problem 
for the generalized Camassa–Holm equation in Besov spaces
JO  - Applicationes Mathematicae
PY  - 2007
SP  - 253
EP  - 267
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am34-3-1/
DO  - 10.4064/am34-3-1
LA  - en
ID  - 10_4064_am34_3_1
ER  - 
%0 Journal Article
%A Gang Wu
%A Jia Yuan
%T Local well-posedness of the Cauchy problem 
for the generalized Camassa–Holm equation in Besov spaces
%J Applicationes Mathematicae
%D 2007
%P 253-267
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am34-3-1/
%R 10.4064/am34-3-1
%G en
%F 10_4064_am34_3_1
Gang Wu; Jia Yuan. Local well-posedness of the Cauchy problem 
for the generalized Camassa–Holm equation in Besov spaces. Applicationes Mathematicae, Tome 34 (2007) no. 3, pp. 253-267. doi : 10.4064/am34-3-1. http://geodesic.mathdoc.fr/articles/10.4064/am34-3-1/

Cité par Sources :