Local well-posedness of the Cauchy problem
for the generalized Camassa–Holm equation in Besov spaces
Applicationes Mathematicae, Tome 34 (2007) no. 3, pp. 253-267
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study local well-posedness of the Cauchy problem for the generalized
Camassa–Holm equation
$\partial_{t}u-\partial^{3}_{txx}u+2\kappa\partial_{x}u+\partial_{x}[{g(u)}/{2}]
=\gamma(2\partial_{x}u\partial^{2}_{xx}u+u\partial^{3}_{xxx}u)$ for the initial data
$u_{0}(x)$ in the Besov space $B^{s}_{p,r}(\Bbb R)$ with
$\max({3}/{2},1
+{1}/{p}) s\leq m$
and $(p,r)\in [1,\infty]^{2}$, where $g:\Bbb R\rightarrow\Bbb R$ is a given $C^{m}$-function ($m\geq 4$)
with $g(0)=g'(0)=0$, and $\kappa\geq 0$ and $\gamma\in \Bbb R$ are fixed
constants.
Using estimates for the transport equation
in the framework of Besov spaces, compactness arguments and Littlewood–Paley
theory,
we get a local well-posedness result.
Keywords:
study local well posedness cauchy problem generalized camassa holm equation partial u partial txx kappa partial partial gamma partial partial partial xxx initial besov space bbb max leq infty where bbb rightarrow bbb given function geq kappa geq gamma bbb fixed constants using estimates transport equation framework besov spaces compactness arguments littlewood paley theory get local well posedness result
Affiliations des auteurs :
Gang Wu 1 ; Jia Yuan 1
@article{10_4064_am34_3_1,
author = {Gang Wu and Jia Yuan},
title = {Local well-posedness of the {Cauchy} problem
for the generalized {Camassa{\textendash}Holm} equation in {Besov} spaces},
journal = {Applicationes Mathematicae},
pages = {253--267},
year = {2007},
volume = {34},
number = {3},
doi = {10.4064/am34-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am34-3-1/}
}
TY - JOUR AU - Gang Wu AU - Jia Yuan TI - Local well-posedness of the Cauchy problem for the generalized Camassa–Holm equation in Besov spaces JO - Applicationes Mathematicae PY - 2007 SP - 253 EP - 267 VL - 34 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/am34-3-1/ DO - 10.4064/am34-3-1 LA - en ID - 10_4064_am34_3_1 ER -
%0 Journal Article %A Gang Wu %A Jia Yuan %T Local well-posedness of the Cauchy problem for the generalized Camassa–Holm equation in Besov spaces %J Applicationes Mathematicae %D 2007 %P 253-267 %V 34 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/am34-3-1/ %R 10.4064/am34-3-1 %G en %F 10_4064_am34_3_1
Gang Wu; Jia Yuan. Local well-posedness of the Cauchy problem for the generalized Camassa–Holm equation in Besov spaces. Applicationes Mathematicae, Tome 34 (2007) no. 3, pp. 253-267. doi: 10.4064/am34-3-1
Cité par Sources :