Uniform asymptotic normality
for the Bernoulli scheme
Applicationes Mathematicae, Tome 34 (2007) no. 2, pp. 215-221
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
It is easy to notice that no sequence of estimators of the
probability of success $\theta$ in a Bernoulli scheme can converge
(when standardized) to $N(0,1)$ uniformly in $\theta\in ]0,1[$.
We show that the uniform asymptotic normality
can be achieved if we allow the sample size, that is,
the number of Bernoulli trials,
to be chosen sequentially.
Keywords:
easy notice sequence estimators probability success theta bernoulli scheme converge standardized uniformly theta uniform asymptotic normality achieved allow sample size number bernoulli trials chosen sequentially
Affiliations des auteurs :
Wojciech Niemiro 1 ; Ryszard Zieli/nski 2
@article{10_4064_am34_2_6,
author = {Wojciech Niemiro and Ryszard Zieli/nski},
title = {Uniform asymptotic normality
for the {Bernoulli} scheme},
journal = {Applicationes Mathematicae},
pages = {215--221},
year = {2007},
volume = {34},
number = {2},
doi = {10.4064/am34-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am34-2-6/}
}
TY - JOUR AU - Wojciech Niemiro AU - Ryszard Zieli/nski TI - Uniform asymptotic normality for the Bernoulli scheme JO - Applicationes Mathematicae PY - 2007 SP - 215 EP - 221 VL - 34 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/am34-2-6/ DO - 10.4064/am34-2-6 LA - en ID - 10_4064_am34_2_6 ER -
Wojciech Niemiro; Ryszard Zieli/nski. Uniform asymptotic normality for the Bernoulli scheme. Applicationes Mathematicae, Tome 34 (2007) no. 2, pp. 215-221. doi: 10.4064/am34-2-6
Cité par Sources :