Free boundary problem for the equations of magnetohydrodynamic incompressible viscous fluid
Applicationes Mathematicae, Tome 34 (2007) no. 1, pp. 75-95.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The existence of a global motion of magnetohydrodynamic fluid in a domain bounded by a free surface and under the external electrodynamic field is proved. The motion is such that the velocity and magnetic field are small in the $H^3$-space.
DOI : 10.4064/am34-1-7
Keywords: existence global motion magnetohydrodynamic fluid domain bounded surface under external electrodynamic field proved motion velocity magnetic field small space

Piotr Kacprzyk 1

1 Institute of Mathematics and Cryptology Cybernetics Faculty Military University of Technology S. Kaliskiego 2 00-908 Warszawa, Poland
@article{10_4064_am34_1_7,
     author = {Piotr Kacprzyk},
     title = {Free boundary problem for the equations of
 magnetohydrodynamic incompressible
 viscous fluid},
     journal = {Applicationes Mathematicae},
     pages = {75--95},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2007},
     doi = {10.4064/am34-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am34-1-7/}
}
TY  - JOUR
AU  - Piotr Kacprzyk
TI  - Free boundary problem for the equations of
 magnetohydrodynamic incompressible
 viscous fluid
JO  - Applicationes Mathematicae
PY  - 2007
SP  - 75
EP  - 95
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am34-1-7/
DO  - 10.4064/am34-1-7
LA  - en
ID  - 10_4064_am34_1_7
ER  - 
%0 Journal Article
%A Piotr Kacprzyk
%T Free boundary problem for the equations of
 magnetohydrodynamic incompressible
 viscous fluid
%J Applicationes Mathematicae
%D 2007
%P 75-95
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am34-1-7/
%R 10.4064/am34-1-7
%G en
%F 10_4064_am34_1_7
Piotr Kacprzyk. Free boundary problem for the equations of
 magnetohydrodynamic incompressible
 viscous fluid. Applicationes Mathematicae, Tome 34 (2007) no. 1, pp. 75-95. doi : 10.4064/am34-1-7. http://geodesic.mathdoc.fr/articles/10.4064/am34-1-7/

Cité par Sources :