Invariants, conservation laws and time decay
for a nonlinear system of Klein–Gordon
equations with Hamiltonian structure
Applicationes Mathematicae, Tome 33 (2006) no. 3-4, pp. 323-344
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We discuss invariants and conservation
laws for a nonlinear system of Klein–Gordon equations with Hamiltonian structure
$$\cases{u_{tt}-{\mit\Delta} u+m^2u=-F_1(|u|^2,|v|^2)u,\cr
v_{tt}-{\mit\Delta} v+m^2v=-F_2(|u|^2, |v|^2)v}$$
for which there
exists a function $F(\lambda, \mu)$ such that
$$\frac{\partial F(\lambda,\mu)}{\partial \lambda}=F_1(\lambda,\mu),\quad
\frac{\partial F(\lambda,\mu)}{\partial \mu}=F_2(\lambda,\mu).$$
Based on Morawetz-type identity, we prove that solutions to
the above system decay to zero in local $L^2$-norm, and local energy
also decays to zero if the initial energy satisfies
$$\displaylines{
E(u, v, \Bbb R^n, 0)={}\frac12\int_{\Bbb R^n}(|\nabla u(0)|^2+|u_t(0)|^2+m^2|u(0)|^2
+|\nabla v(0)|^2\cr
{} +|v_t(0)|^2+m^2|v(0)|^2+F(|u(0)|^2, |v(0)|^2))\,dx\infty,\cr}$$
and
$$\displaylines{
F_1(|u|^2, |v|^2)|u|^2+F_2(|u|^2, |v|^2)|v|^2-F(|u|^2, |v|^2)\cr
\ge a F(|u|^2, |v|^2)\ge 0,\ \quad a>0.}$$
Keywords:
discuss invariants conservation laws nonlinear system klein gordon equations hamiltonian structure cases mit delta f mit delta f which there exists function lambda frac partial lambda partial lambda lambda quad frac partial lambda partial lambda based morawetz type identity prove solutions above system decay zero local norm local energy decays zero initial energy satisfies displaylines bbb frac int bbb nabla nabla infty displaylines f quad
Affiliations des auteurs :
Changxing Miao 1 ; Youbin Zhu 2
@article{10_4064_am33_3_7,
author = {Changxing Miao and Youbin Zhu},
title = {Invariants, conservation laws and time decay
for a nonlinear system of {Klein{\textendash}Gordon
} equations with {Hamiltonian} structure},
journal = {Applicationes Mathematicae},
pages = {323--344},
year = {2006},
volume = {33},
number = {3-4},
doi = {10.4064/am33-3-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am33-3-7/}
}
TY - JOUR AU - Changxing Miao AU - Youbin Zhu TI - Invariants, conservation laws and time decay for a nonlinear system of Klein–Gordon equations with Hamiltonian structure JO - Applicationes Mathematicae PY - 2006 SP - 323 EP - 344 VL - 33 IS - 3-4 UR - http://geodesic.mathdoc.fr/articles/10.4064/am33-3-7/ DO - 10.4064/am33-3-7 LA - en ID - 10_4064_am33_3_7 ER -
%0 Journal Article %A Changxing Miao %A Youbin Zhu %T Invariants, conservation laws and time decay for a nonlinear system of Klein–Gordon equations with Hamiltonian structure %J Applicationes Mathematicae %D 2006 %P 323-344 %V 33 %N 3-4 %U http://geodesic.mathdoc.fr/articles/10.4064/am33-3-7/ %R 10.4064/am33-3-7 %G en %F 10_4064_am33_3_7
Changxing Miao; Youbin Zhu. Invariants, conservation laws and time decay for a nonlinear system of Klein–Gordon equations with Hamiltonian structure. Applicationes Mathematicae, Tome 33 (2006) no. 3-4, pp. 323-344. doi: 10.4064/am33-3-7
Cité par Sources :