Invariants, conservation laws and time decay for a nonlinear system of Klein–Gordon equations with Hamiltonian structure
Applicationes Mathematicae, Tome 33 (2006) no. 3-4, pp. 323-344.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We discuss invariants and conservation laws for a nonlinear system of Klein–Gordon equations with Hamiltonian structure $$\cases{u_{tt}-{\mit\Delta} u+m^2u=-F_1(|u|^2,|v|^2)u,\cr v_{tt}-{\mit\Delta} v+m^2v=-F_2(|u|^2, |v|^2)v}$$ for which there exists a function $F(\lambda, \mu)$ such that $$\frac{\partial F(\lambda,\mu)}{\partial \lambda}=F_1(\lambda,\mu),\quad \frac{\partial F(\lambda,\mu)}{\partial \mu}=F_2(\lambda,\mu).$$ Based on Morawetz-type identity, we prove that solutions to the above system decay to zero in local $L^2$-norm, and local energy also decays to zero if the initial energy satisfies $$\displaylines{ E(u, v, \Bbb R^n, 0)={}\frac12\int_{\Bbb R^n}(|\nabla u(0)|^2+|u_t(0)|^2+m^2|u(0)|^2 +|\nabla v(0)|^2\cr {} +|v_t(0)|^2+m^2|v(0)|^2+F(|u(0)|^2, |v(0)|^2))\,dx\infty,\cr}$$ and $$\displaylines{ F_1(|u|^2, |v|^2)|u|^2+F_2(|u|^2, |v|^2)|v|^2-F(|u|^2, |v|^2)\cr \ge a F(|u|^2, |v|^2)\ge 0,\ \quad a>0.}$$
DOI : 10.4064/am33-3-7
Keywords: discuss invariants conservation laws nonlinear system klein gordon equations hamiltonian structure cases mit delta f mit delta f which there exists function lambda frac partial lambda partial lambda lambda quad frac partial lambda partial lambda based morawetz type identity prove solutions above system decay zero local norm local energy decays zero initial energy satisfies displaylines bbb frac int bbb nabla nabla infty displaylines f quad

Changxing Miao 1 ; Youbin Zhu 2

1 Institute of Applied Physics and Computational Mathematics P.O. Box 8009 Beijing 100088, China
2 Department of Mathematics Xidian University P.O. Box 245 Xi'an, Shanxi 710071, China
@article{10_4064_am33_3_7,
     author = {Changxing Miao and Youbin Zhu},
     title = {Invariants, conservation  laws  and time decay
  for  a nonlinear system of {Klein{\textendash}Gordon
} equations  with {Hamiltonian} structure},
     journal = {Applicationes Mathematicae},
     pages = {323--344},
     publisher = {mathdoc},
     volume = {33},
     number = {3-4},
     year = {2006},
     doi = {10.4064/am33-3-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am33-3-7/}
}
TY  - JOUR
AU  - Changxing Miao
AU  - Youbin Zhu
TI  - Invariants, conservation  laws  and time decay
  for  a nonlinear system of Klein–Gordon
 equations  with Hamiltonian structure
JO  - Applicationes Mathematicae
PY  - 2006
SP  - 323
EP  - 344
VL  - 33
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am33-3-7/
DO  - 10.4064/am33-3-7
LA  - en
ID  - 10_4064_am33_3_7
ER  - 
%0 Journal Article
%A Changxing Miao
%A Youbin Zhu
%T Invariants, conservation  laws  and time decay
  for  a nonlinear system of Klein–Gordon
 equations  with Hamiltonian structure
%J Applicationes Mathematicae
%D 2006
%P 323-344
%V 33
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am33-3-7/
%R 10.4064/am33-3-7
%G en
%F 10_4064_am33_3_7
Changxing Miao; Youbin Zhu. Invariants, conservation  laws  and time decay
  for  a nonlinear system of Klein–Gordon
 equations  with Hamiltonian structure. Applicationes Mathematicae, Tome 33 (2006) no. 3-4, pp. 323-344. doi : 10.4064/am33-3-7. http://geodesic.mathdoc.fr/articles/10.4064/am33-3-7/

Cité par Sources :