Bernstein inequality for the parameter
of the $p$th order autoregressive process AR$(p)$
Applicationes Mathematicae, Tome 33 (2006) no. 3-4, pp. 253-264
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The autoregressive process takes an important part in
predicting problems leading to decision making. In practice, we use
the least squares method to estimate the parameter
$\widetilde{\theta}$ of the first-order autoregressive process
taking values in a real separable Banach space $B$ $(ARB(1))$, if it
satisfies the following relation:
$$
\widetilde{X}_t=\widetilde{\theta} \widetilde{X}_{t-1}+
\widetilde{\varepsilon}_t.
$$
In this paper we study the convergence in distribution of the linear
operator $I(\widetilde{\theta}_T, \widetilde{\theta})=
(\widetilde{\theta}_T-\widetilde{\theta})\widetilde{\theta}^{T-2}$
for $\|\widetilde{\theta}\|>1$ and so we construct
inequalities of Bernstein type for this operator.
Keywords:
autoregressive process takes important part predicting problems leading decision making practice least squares method estimate parameter widetilde theta first order autoregressive process taking values real separable banach space arb satisfies following relation widetilde widetilde theta widetilde t widetilde varepsilon paper study convergence distribution linear operator widetilde theta widetilde theta widetilde theta t widetilde theta widetilde theta t widetilde theta construct inequalities bernstein type operator
Affiliations des auteurs :
Samir Benaissa 1
@article{10_4064_am33_3_1,
author = {Samir Benaissa},
title = {Bernstein inequality for the parameter
of the $p$th order autoregressive process {AR}$(p)$},
journal = {Applicationes Mathematicae},
pages = {253--264},
publisher = {mathdoc},
volume = {33},
number = {3-4},
year = {2006},
doi = {10.4064/am33-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am33-3-1/}
}
TY - JOUR AU - Samir Benaissa TI - Bernstein inequality for the parameter of the $p$th order autoregressive process AR$(p)$ JO - Applicationes Mathematicae PY - 2006 SP - 253 EP - 264 VL - 33 IS - 3-4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/am33-3-1/ DO - 10.4064/am33-3-1 LA - en ID - 10_4064_am33_3_1 ER -
%0 Journal Article %A Samir Benaissa %T Bernstein inequality for the parameter of the $p$th order autoregressive process AR$(p)$ %J Applicationes Mathematicae %D 2006 %P 253-264 %V 33 %N 3-4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/am33-3-1/ %R 10.4064/am33-3-1 %G en %F 10_4064_am33_3_1
Samir Benaissa. Bernstein inequality for the parameter of the $p$th order autoregressive process AR$(p)$. Applicationes Mathematicae, Tome 33 (2006) no. 3-4, pp. 253-264. doi: 10.4064/am33-3-1
Cité par Sources :