Bernstein inequality for the parameter of the $p$th order autoregressive process AR$(p)$
Applicationes Mathematicae, Tome 33 (2006) no. 3-4, pp. 253-264.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The autoregressive process takes an important part in predicting problems leading to decision making. In practice, we use the least squares method to estimate the parameter $\widetilde{\theta}$ of the first-order autoregressive process taking values in a real separable Banach space $B$ $(ARB(1))$, if it satisfies the following relation: $$ \widetilde{X}_t=\widetilde{\theta} \widetilde{X}_{t-1}+ \widetilde{\varepsilon}_t. $$ In this paper we study the convergence in distribution of the linear operator $I(\widetilde{\theta}_T, \widetilde{\theta})= (\widetilde{\theta}_T-\widetilde{\theta})\widetilde{\theta}^{T-2}$ for $\|\widetilde{\theta}\|>1$ and so we construct inequalities of Bernstein type for this operator.
DOI : 10.4064/am33-3-1
Keywords: autoregressive process takes important part predicting problems leading decision making practice least squares method estimate parameter widetilde theta first order autoregressive process taking values real separable banach space arb satisfies following relation widetilde widetilde theta widetilde t widetilde varepsilon paper study convergence distribution linear operator widetilde theta widetilde theta widetilde theta t widetilde theta widetilde theta t widetilde theta construct inequalities bernstein type operator

Samir Benaissa 1

1 Laboratoire de Mathématiques Université Djillali Liabès B.P. 89, Sidi Bel Abbès 22000, Algeria
@article{10_4064_am33_3_1,
     author = {Samir Benaissa},
     title = {Bernstein inequality for the parameter
of the $p$th order autoregressive process {AR}$(p)$},
     journal = {Applicationes Mathematicae},
     pages = {253--264},
     publisher = {mathdoc},
     volume = {33},
     number = {3-4},
     year = {2006},
     doi = {10.4064/am33-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am33-3-1/}
}
TY  - JOUR
AU  - Samir Benaissa
TI  - Bernstein inequality for the parameter
of the $p$th order autoregressive process AR$(p)$
JO  - Applicationes Mathematicae
PY  - 2006
SP  - 253
EP  - 264
VL  - 33
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am33-3-1/
DO  - 10.4064/am33-3-1
LA  - en
ID  - 10_4064_am33_3_1
ER  - 
%0 Journal Article
%A Samir Benaissa
%T Bernstein inequality for the parameter
of the $p$th order autoregressive process AR$(p)$
%J Applicationes Mathematicae
%D 2006
%P 253-264
%V 33
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am33-3-1/
%R 10.4064/am33-3-1
%G en
%F 10_4064_am33_3_1
Samir Benaissa. Bernstein inequality for the parameter
of the $p$th order autoregressive process AR$(p)$. Applicationes Mathematicae, Tome 33 (2006) no. 3-4, pp. 253-264. doi : 10.4064/am33-3-1. http://geodesic.mathdoc.fr/articles/10.4064/am33-3-1/

Cité par Sources :