Uniform decompositions of polytopes
Applicationes Mathematicae, Tome 33 (2006) no. 2, pp. 243-252.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We design a method of decomposing convex polytopes into simpler polytopes. This decomposition yields a way of calculating exactly the volume of the polytope, or, more generally, multiple integrals over the polytope, which is equivalent to the way suggested in Schechter, based on Fourier–Motzkin elimination (Schrijver). Our method is applicable for finding uniform decompositions of certain natural families of polytopes. Moreover, this allows us to find algorithmically an analytic expression for the distribution function of a random variable of the form $\sum_{i=1}^{d}c_{i}X_{i}$, where $(X_{1},\ldots ,X_{d})$ is a random vector, uniformly distributed in a polytope.
DOI : 10.4064/am33-2-7
Mots-clés : design method decomposing convex polytopes simpler polytopes decomposition yields calculating exactly volume polytope generally multiple integrals polytope which equivalent suggested schechter based fourier motzkin elimination schrijver method applicable finding uniform decompositions certain natural families polytopes moreover allows algorithmically analytic expression distribution function random variable form sum where ldots random vector uniformly distributed polytope

Daniel Berend 1 ; Luba Bromberg 2

1 Departments of Mathematics and Computer Science Ben-Gurion University of the Negev Beer-Sheva 84105, Israel
2 Department of Mathematics Ben-Gurion University of the Negev Beer-Sheva 84105, Israel
@article{10_4064_am33_2_7,
     author = {Daniel Berend and Luba Bromberg},
     title = {Uniform decompositions of polytopes},
     journal = {Applicationes Mathematicae},
     pages = {243--252},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2006},
     doi = {10.4064/am33-2-7},
     zbl = {1112.65016},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am33-2-7/}
}
TY  - JOUR
AU  - Daniel Berend
AU  - Luba Bromberg
TI  - Uniform decompositions of polytopes
JO  - Applicationes Mathematicae
PY  - 2006
SP  - 243
EP  - 252
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am33-2-7/
DO  - 10.4064/am33-2-7
LA  - fr
ID  - 10_4064_am33_2_7
ER  - 
%0 Journal Article
%A Daniel Berend
%A Luba Bromberg
%T Uniform decompositions of polytopes
%J Applicationes Mathematicae
%D 2006
%P 243-252
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am33-2-7/
%R 10.4064/am33-2-7
%G fr
%F 10_4064_am33_2_7
Daniel Berend; Luba Bromberg. Uniform decompositions of polytopes. Applicationes Mathematicae, Tome 33 (2006) no. 2, pp. 243-252. doi : 10.4064/am33-2-7. http://geodesic.mathdoc.fr/articles/10.4064/am33-2-7/

Cité par Sources :