Covariance structure of wide-sense
Markov processes of order $k\geq 1$
Applicationes Mathematicae, Tome 33 (2006) no. 2, pp. 129-143
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
A notion of a wide-sense Markov process $\{X_t\}$ of
order $k\geq 1,$ $\{X_t\} \sim {\rm WM}(k),$ is introduced as a direct
generalization of Doob's notion of wide-sense Markov process (of
order $k=1$ in our terminology).
A base for investigation of the covariance structure of $\{X_t\}$
is the $k$-dimensional process $\{x_t=(X_{t-k+1},\dots, X_t)\}.$
The covariance structure of $\{X_t\}\sim {\rm WM}(k)$ is considered in the
general case and in the periodic case. In the general case it is shown
that $\{X_t\}\sim {\rm WM}(k)$ iff $\{x_t\}$ is a $k$-dimensional ${\rm WM}(1)$
process and iff the covariance function of $\{x_t\}$ has the
triangular property. Moreover, an analogue of Borisov's theorem
is proved for $\{x_t\}.$ In the periodic case, with period $d>1,$ it
is shown that Gladyshev's process
$\{Y_t=(X_{(t-1)d+1}, \dots, X_{td})\}$ is a $d$-dimensional
${\rm AR}(p)$ process with $p= \lceil k/d \rceil .$
Keywords:
notion wide sense markov process order geq sim introduced direct generalization doobs notion wide sense markov process order terminology base investigation covariance structure k dimensional process t k dots covariance structure sim considered general periodic general shown sim k dimensional process covariance function has triangular property moreover analogue borisovs theorem proved periodic period shown gladyshevs process t dots d dimensional process lceil rceil
Affiliations des auteurs :
Arkadiusz Kasprzyk 1 ; W/ladys/law Szczotka 1
@article{10_4064_am33_2_1,
author = {Arkadiusz Kasprzyk and W/ladys/law Szczotka},
title = {Covariance structure of wide-sense
{Markov} processes of order $k\geq 1$},
journal = {Applicationes Mathematicae},
pages = {129--143},
year = {2006},
volume = {33},
number = {2},
doi = {10.4064/am33-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am33-2-1/}
}
TY - JOUR AU - Arkadiusz Kasprzyk AU - W/ladys/law Szczotka TI - Covariance structure of wide-sense Markov processes of order $k\geq 1$ JO - Applicationes Mathematicae PY - 2006 SP - 129 EP - 143 VL - 33 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/am33-2-1/ DO - 10.4064/am33-2-1 LA - en ID - 10_4064_am33_2_1 ER -
%0 Journal Article %A Arkadiusz Kasprzyk %A W/ladys/law Szczotka %T Covariance structure of wide-sense Markov processes of order $k\geq 1$ %J Applicationes Mathematicae %D 2006 %P 129-143 %V 33 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/am33-2-1/ %R 10.4064/am33-2-1 %G en %F 10_4064_am33_2_1
Arkadiusz Kasprzyk; W/ladys/law Szczotka. Covariance structure of wide-sense Markov processes of order $k\geq 1$. Applicationes Mathematicae, Tome 33 (2006) no. 2, pp. 129-143. doi: 10.4064/am33-2-1
Cité par Sources :