Covariance structure of wide-sense Markov processes of order $k\geq 1$
Applicationes Mathematicae, Tome 33 (2006) no. 2, pp. 129-143.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A notion of a wide-sense Markov process $\{X_t\}$ of order $k\geq 1,$ $\{X_t\} \sim {\rm WM}(k),$ is introduced as a direct generalization of Doob's notion of wide-sense Markov process (of order $k=1$ in our terminology). A base for investigation of the covariance structure of $\{X_t\}$ is the $k$-dimensional process $\{x_t=(X_{t-k+1},\dots, X_t)\}.$ The covariance structure of $\{X_t\}\sim {\rm WM}(k)$ is considered in the general case and in the periodic case. In the general case it is shown that $\{X_t\}\sim {\rm WM}(k)$ iff $\{x_t\}$ is a $k$-dimensional ${\rm WM}(1)$ process and iff the covariance function of $\{x_t\}$ has the triangular property. Moreover, an analogue of Borisov's theorem is proved for $\{x_t\}.$ In the periodic case, with period $d>1,$ it is shown that Gladyshev's process $\{Y_t=(X_{(t-1)d+1}, \dots, X_{td})\}$ is a $d$-dimensional ${\rm AR}(p)$ process with $p= \lceil k/d \rceil .$
DOI : 10.4064/am33-2-1
Keywords: notion wide sense markov process order geq sim introduced direct generalization doobs notion wide sense markov process order terminology base investigation covariance structure k dimensional process t k dots covariance structure sim considered general periodic general shown sim k dimensional process covariance function has triangular property moreover analogue borisovs theorem proved periodic period shown gladyshevs process t dots d dimensional process lceil rceil

Arkadiusz Kasprzyk 1 ; W/ladys/law Szczotka 1

1 Mathematical Institute University of Wroc/law Pl. Grunwaldzki 2/4 50-384 Wroc/law, Poland
@article{10_4064_am33_2_1,
     author = {Arkadiusz Kasprzyk and W/ladys/law Szczotka},
     title = {Covariance structure of wide-sense
 {Markov} processes of order $k\geq 1$},
     journal = {Applicationes Mathematicae},
     pages = {129--143},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2006},
     doi = {10.4064/am33-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am33-2-1/}
}
TY  - JOUR
AU  - Arkadiusz Kasprzyk
AU  - W/ladys/law Szczotka
TI  - Covariance structure of wide-sense
 Markov processes of order $k\geq 1$
JO  - Applicationes Mathematicae
PY  - 2006
SP  - 129
EP  - 143
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am33-2-1/
DO  - 10.4064/am33-2-1
LA  - en
ID  - 10_4064_am33_2_1
ER  - 
%0 Journal Article
%A Arkadiusz Kasprzyk
%A W/ladys/law Szczotka
%T Covariance structure of wide-sense
 Markov processes of order $k\geq 1$
%J Applicationes Mathematicae
%D 2006
%P 129-143
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am33-2-1/
%R 10.4064/am33-2-1
%G en
%F 10_4064_am33_2_1
Arkadiusz Kasprzyk; W/ladys/law Szczotka. Covariance structure of wide-sense
 Markov processes of order $k\geq 1$. Applicationes Mathematicae, Tome 33 (2006) no. 2, pp. 129-143. doi : 10.4064/am33-2-1. http://geodesic.mathdoc.fr/articles/10.4064/am33-2-1/

Cité par Sources :