Superconvergence by Steklov averaging in the finite element method
Applicationes Mathematicae, Tome 32 (2005) no. 4, pp. 477-488.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The Steklov postprocessing operator for the linear finite element method is studied. Superconvergence of order $\mathcal{O}(h^2)$ is proved for a class of second order differential equations with zero Dirichlet boundary conditions for arbitrary space dimensions. Relations to other postprocessing and averaging schemes are discussed.
DOI : 10.4064/am32-4-8
Keywords: steklov postprocessing operator linear finite element method studied superconvergence order mathcal proved class second order differential equations zero dirichlet boundary conditions arbitrary space dimensions relations other postprocessing averaging schemes discussed

Karel Kolman 1

1 Mathematical Institute Academy of Sciences of the Czech Republic Žitná 25 115 67 Praha 1, Czech Republic
@article{10_4064_am32_4_8,
     author = {Karel Kolman},
     title = {Superconvergence by {Steklov} averaging in the finite element method},
     journal = {Applicationes Mathematicae},
     pages = {477--488},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2005},
     doi = {10.4064/am32-4-8},
     zbl = {1109.65092},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am32-4-8/}
}
TY  - JOUR
AU  - Karel Kolman
TI  - Superconvergence by Steklov averaging in the finite element method
JO  - Applicationes Mathematicae
PY  - 2005
SP  - 477
EP  - 488
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am32-4-8/
DO  - 10.4064/am32-4-8
LA  - en
ID  - 10_4064_am32_4_8
ER  - 
%0 Journal Article
%A Karel Kolman
%T Superconvergence by Steklov averaging in the finite element method
%J Applicationes Mathematicae
%D 2005
%P 477-488
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am32-4-8/
%R 10.4064/am32-4-8
%G en
%F 10_4064_am32_4_8
Karel Kolman. Superconvergence by Steklov averaging in the finite element method. Applicationes Mathematicae, Tome 32 (2005) no. 4, pp. 477-488. doi : 10.4064/am32-4-8. http://geodesic.mathdoc.fr/articles/10.4064/am32-4-8/

Cité par Sources :