Superconvergence by Steklov averaging in the finite element method
Applicationes Mathematicae, Tome 32 (2005) no. 4, pp. 477-488
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The Steklov postprocessing operator for the linear finite element
method is studied. Superconvergence of order $\mathcal{O}(h^2)$ is
proved for a class of second order differential equations with zero
Dirichlet boundary conditions for arbitrary space dimensions.
Relations to other postprocessing and averaging schemes are discussed.
DOI :
10.4064/am32-4-8
Keywords:
steklov postprocessing operator linear finite element method studied superconvergence order mathcal proved class second order differential equations zero dirichlet boundary conditions arbitrary space dimensions relations other postprocessing averaging schemes discussed
Affiliations des auteurs :
Karel Kolman 1
@article{10_4064_am32_4_8,
author = {Karel Kolman},
title = {Superconvergence by {Steklov} averaging in the finite element method},
journal = {Applicationes Mathematicae},
pages = {477--488},
year = {2005},
volume = {32},
number = {4},
doi = {10.4064/am32-4-8},
zbl = {1109.65092},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am32-4-8/}
}
Karel Kolman. Superconvergence by Steklov averaging in the finite element method. Applicationes Mathematicae, Tome 32 (2005) no. 4, pp. 477-488. doi: 10.4064/am32-4-8
Cité par Sources :