The relaxation of the Signorini problem
for polyconvex functionals
with linear growth at infinity
Applicationes Mathematicae, Tome 32 (2005) no. 4, pp. 443-464
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The aim of this paper is to study the unilateral contact condition (Signorini problem) for polyconvex functionals with linear growth at infinity. We find the lower semicontinuous relaxation of the original functional (defined over a subset of the space of bounded variations $BV({\mit\Omega} )$) and we prove the existence theorem. Moreover, we discuss the Winkler unilateral contact condition. As an application, we show a few examples of elastic-plastic potentials for finite displacements.
Keywords:
paper study unilateral contact condition signorini problem polyconvex functionals linear growth infinity lower semicontinuous relaxation original functional defined subset space bounded variations mit omega prove existence theorem moreover discuss winkler unilateral contact condition application few examples elastic plastic potentials finite displacements
Affiliations des auteurs :
Jarosław L. Bojarski 1
@article{10_4064_am32_4_6,
author = {Jaros{\l}aw L. Bojarski},
title = {The relaxation of the {Signorini} problem
for polyconvex functionals
with linear growth at infinity},
journal = {Applicationes Mathematicae},
pages = {443--464},
year = {2005},
volume = {32},
number = {4},
doi = {10.4064/am32-4-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am32-4-6/}
}
TY - JOUR AU - Jarosław L. Bojarski TI - The relaxation of the Signorini problem for polyconvex functionals with linear growth at infinity JO - Applicationes Mathematicae PY - 2005 SP - 443 EP - 464 VL - 32 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4064/am32-4-6/ DO - 10.4064/am32-4-6 LA - en ID - 10_4064_am32_4_6 ER -
%0 Journal Article %A Jarosław L. Bojarski %T The relaxation of the Signorini problem for polyconvex functionals with linear growth at infinity %J Applicationes Mathematicae %D 2005 %P 443-464 %V 32 %N 4 %U http://geodesic.mathdoc.fr/articles/10.4064/am32-4-6/ %R 10.4064/am32-4-6 %G en %F 10_4064_am32_4_6
Jarosław L. Bojarski. The relaxation of the Signorini problem for polyconvex functionals with linear growth at infinity. Applicationes Mathematicae, Tome 32 (2005) no. 4, pp. 443-464. doi: 10.4064/am32-4-6
Cité par Sources :