The relaxation of the Signorini problem for polyconvex functionals with linear growth at infinity
Applicationes Mathematicae, Tome 32 (2005) no. 4, pp. 443-464.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The aim of this paper is to study the unilateral contact condition (Signorini problem) for polyconvex functionals with linear growth at infinity. We find the lower semicontinuous relaxation of the original functional (defined over a subset of the space of bounded variations $BV({\mit\Omega} )$) and we prove the existence theorem. Moreover, we discuss the Winkler unilateral contact condition. As an application, we show a few examples of elastic-plastic potentials for finite displacements.
DOI : 10.4064/am32-4-6
Keywords: paper study unilateral contact condition signorini problem polyconvex functionals linear growth infinity lower semicontinuous relaxation original functional defined subset space bounded variations mit omega prove existence theorem moreover discuss winkler unilateral contact condition application few examples elastic plastic potentials finite displacements

Jarosław L. Bojarski 1

1 Department of Applied Mathematics Warsaw Agricultural University–SGGW Nowoursynowska 159 02-787 Warszawa, Poland
@article{10_4064_am32_4_6,
     author = {Jaros{\l}aw L. Bojarski},
     title = {The relaxation of the {Signorini} problem
 for polyconvex functionals
 with linear growth at infinity},
     journal = {Applicationes Mathematicae},
     pages = {443--464},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2005},
     doi = {10.4064/am32-4-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am32-4-6/}
}
TY  - JOUR
AU  - Jarosław L. Bojarski
TI  - The relaxation of the Signorini problem
 for polyconvex functionals
 with linear growth at infinity
JO  - Applicationes Mathematicae
PY  - 2005
SP  - 443
EP  - 464
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am32-4-6/
DO  - 10.4064/am32-4-6
LA  - en
ID  - 10_4064_am32_4_6
ER  - 
%0 Journal Article
%A Jarosław L. Bojarski
%T The relaxation of the Signorini problem
 for polyconvex functionals
 with linear growth at infinity
%J Applicationes Mathematicae
%D 2005
%P 443-464
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am32-4-6/
%R 10.4064/am32-4-6
%G en
%F 10_4064_am32_4_6
Jarosław L. Bojarski. The relaxation of the Signorini problem
 for polyconvex functionals
 with linear growth at infinity. Applicationes Mathematicae, Tome 32 (2005) no. 4, pp. 443-464. doi : 10.4064/am32-4-6. http://geodesic.mathdoc.fr/articles/10.4064/am32-4-6/

Cité par Sources :