A model of evolution of temperature and density of ions in an electrolyte
Applicationes Mathematicae, Tome 32 (2005) no. 2, pp. 225-241.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study existence and nonexistence of solutions (both stationary and evolution) for a parabolic-elliptic system describing the electrodiffusion of ions. In this model the evolution of temperature is also taken into account. For stationary states the existence of an external potential is also assumed.
DOI : 10.4064/am32-2-8
Keywords: study existence nonexistence solutions stationary evolution parabolic elliptic system describing electrodiffusion ions model evolution temperature taken account stationary states existence external potential assumed

Andrzej Raczyński 1

1 Institute of Mathematics University of Wroc/law Pl. Grunwaldzki 2/4 50-384 Wroc/law, Poland
@article{10_4064_am32_2_8,
     author = {Andrzej Raczy\'nski},
     title = {A model of evolution of temperature and density of ions in
an electrolyte},
     journal = {Applicationes Mathematicae},
     pages = {225--241},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2005},
     doi = {10.4064/am32-2-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am32-2-8/}
}
TY  - JOUR
AU  - Andrzej Raczyński
TI  - A model of evolution of temperature and density of ions in
an electrolyte
JO  - Applicationes Mathematicae
PY  - 2005
SP  - 225
EP  - 241
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am32-2-8/
DO  - 10.4064/am32-2-8
LA  - en
ID  - 10_4064_am32_2_8
ER  - 
%0 Journal Article
%A Andrzej Raczyński
%T A model of evolution of temperature and density of ions in
an electrolyte
%J Applicationes Mathematicae
%D 2005
%P 225-241
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am32-2-8/
%R 10.4064/am32-2-8
%G en
%F 10_4064_am32_2_8
Andrzej Raczyński. A model of evolution of temperature and density of ions in
an electrolyte. Applicationes Mathematicae, Tome 32 (2005) no. 2, pp. 225-241. doi : 10.4064/am32-2-8. http://geodesic.mathdoc.fr/articles/10.4064/am32-2-8/

Cité par Sources :