Two-point priors and minimax estimation
of a bounded parameter under convex loss
Applicationes Mathematicae, Tome 32 (2005) no. 2, pp. 145-153
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The problem of minimax estimation of a parameter ${\theta }$ when ${\theta }$ is restricted to a finite interval $[{\theta }_0,{\theta }_0+m]$ is studied. The case of a convex loss function is considered. Sufficient conditions for existence of a minimax estimator which is a Bayes estimator with respect to a prior concentrated in two points ${\theta }_0$ and ${\theta }_0+m$ are obtained. An example is presented.
Keywords:
problem minimax estimation parameter theta theta restricted finite interval theta theta studied convex loss function considered sufficient conditions existence minimax estimator which bayes estimator respect prior concentrated points theta theta obtained example presented
Affiliations des auteurs :
Agata Boratyńska 1
@article{10_4064_am32_2_3,
author = {Agata Boraty\'nska},
title = {Two-point priors and minimax estimation
of a bounded parameter under convex loss},
journal = {Applicationes Mathematicae},
pages = {145--153},
year = {2005},
volume = {32},
number = {2},
doi = {10.4064/am32-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am32-2-3/}
}
TY - JOUR AU - Agata Boratyńska TI - Two-point priors and minimax estimation of a bounded parameter under convex loss JO - Applicationes Mathematicae PY - 2005 SP - 145 EP - 153 VL - 32 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/am32-2-3/ DO - 10.4064/am32-2-3 LA - en ID - 10_4064_am32_2_3 ER -
Agata Boratyńska. Two-point priors and minimax estimation of a bounded parameter under convex loss. Applicationes Mathematicae, Tome 32 (2005) no. 2, pp. 145-153. doi: 10.4064/am32-2-3
Cité par Sources :