On the integrability of the generalized
Yang–Mills system
Applicationes Mathematicae, Tome 31 (2004) no. 3, pp. 345-351
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider a hamiltonian system which, in a special case and under the gauge group $SU(2)$, can be considered as a reduction of the Yang–Mills field equations. We prove explicitly, using the Lax spectral curve technique and the van Moerbeke–Mumford method, that the flows generated by the constants of motion are straight lines on the Jacobi variety of a genus two Riemann surface.
Keywords:
consider hamiltonian system which special under gauge group considered reduction yang mills field equations prove explicitly using lax spectral curve technique van moerbeke mumford method flows generated constants motion straight lines jacobi variety genus riemann surface
Affiliations des auteurs :
A. Lesfari 1 ; A. Elachab 2
@article{10_4064_am31_3_8,
author = {A. Lesfari and A. Elachab},
title = {On the integrability of the generalized
{Yang{\textendash}Mills} system},
journal = {Applicationes Mathematicae},
pages = {345--351},
year = {2004},
volume = {31},
number = {3},
doi = {10.4064/am31-3-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am31-3-8/}
}
A. Lesfari; A. Elachab. On the integrability of the generalized Yang–Mills system. Applicationes Mathematicae, Tome 31 (2004) no. 3, pp. 345-351. doi: 10.4064/am31-3-8
Cité par Sources :