General method of regularization. II: Relaxation proposed by suquet
Applicationes Mathematicae, Tome 31 (2004) no. 3, pp. 321-343.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material) is the lower semicontinuous regularization of the plastic energy. We find the integral representation of a non-locally coercive functional. We show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet. Moreover, we prove an existence theorem for the limit analysis problem.
DOI : 10.4064/am31-3-7
Keywords: paper prove relaxation elastic perfectly plastic energy solid made hencky material lower semicontinuous regularization plastic energy integral representation non locally coercive functional set solutions relaxed problem equal set solutions relaxed problem proposed suquet moreover prove existence theorem limit analysis problem

Jarosław L. Bojarski 1

1 Institute of Fundamental Technological Research Polish Academy of Sciences Świętokrzyska 21 00-049 Warszawa, Poland
@article{10_4064_am31_3_7,
     author = {Jaros{\l}aw L. Bojarski},
     title = {General method of regularization.
 {II:} {Relaxation} proposed by suquet},
     journal = {Applicationes Mathematicae},
     pages = {321--343},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2004},
     doi = {10.4064/am31-3-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am31-3-7/}
}
TY  - JOUR
AU  - Jarosław L. Bojarski
TI  - General method of regularization.
 II: Relaxation proposed by suquet
JO  - Applicationes Mathematicae
PY  - 2004
SP  - 321
EP  - 343
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am31-3-7/
DO  - 10.4064/am31-3-7
LA  - en
ID  - 10_4064_am31_3_7
ER  - 
%0 Journal Article
%A Jarosław L. Bojarski
%T General method of regularization.
 II: Relaxation proposed by suquet
%J Applicationes Mathematicae
%D 2004
%P 321-343
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am31-3-7/
%R 10.4064/am31-3-7
%G en
%F 10_4064_am31_3_7
Jarosław L. Bojarski. General method of regularization.
 II: Relaxation proposed by suquet. Applicationes Mathematicae, Tome 31 (2004) no. 3, pp. 321-343. doi : 10.4064/am31-3-7. http://geodesic.mathdoc.fr/articles/10.4064/am31-3-7/

Cité par Sources :