General method of regularization.
I: Functionals defined on BD space
Applicationes Mathematicae, Tome 31 (2004) no. 2, pp. 175-199
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material) is the lower semicontinuous regularization of the plastic energy. We find the integral representation of a non-locally coercive functional. In part II, we will show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet. Moreover, we will prove the existence theorem for the limit analysis problem.
Keywords:
paper prove relaxation elastic perfectly plastic energy solid made hencky material lower semicontinuous regularization plastic energy integral representation non locally coercive functional part set solutions relaxed problem equal set solutions relaxed problem proposed suquet moreover prove existence theorem limit analysis problem
Affiliations des auteurs :
Jarosław L. Bojarski 1
@article{10_4064_am31_2_4,
author = {Jaros{\l}aw L. Bojarski},
title = {General method of regularization.
{I:} {Functionals} defined on {BD} space},
journal = {Applicationes Mathematicae},
pages = {175--199},
year = {2004},
volume = {31},
number = {2},
doi = {10.4064/am31-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am31-2-4/}
}
TY - JOUR AU - Jarosław L. Bojarski TI - General method of regularization. I: Functionals defined on BD space JO - Applicationes Mathematicae PY - 2004 SP - 175 EP - 199 VL - 31 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/am31-2-4/ DO - 10.4064/am31-2-4 LA - en ID - 10_4064_am31_2_4 ER -
Jarosław L. Bojarski. General method of regularization. I: Functionals defined on BD space. Applicationes Mathematicae, Tome 31 (2004) no. 2, pp. 175-199. doi: 10.4064/am31-2-4
Cité par Sources :