Properties of the induced semigroup
of an Archimedean copula
Applicationes Mathematicae, Tome 31 (2004) no. 2, pp. 161-174
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
It is shown that to every Archimedean copula $H$ there corresponds a one-parameter
semigroup of transformations of the interval $[0,1]$. If the elements of the
semigroup are diffeomorphisms, then it determines a special function $v_{H}$
called the vector generator. Its knowledge permits finding a pseudoinverse
$y = h(x)$ of the additive generator of the Archimedean copula $H$ by solving
the differential equation ${d^{}{y}/d{x}^{}} = {v_{H}(y) / x}$ with initial condition ${(d^{}{h}/d{x}^{})}(0) = -1$. Weak convergence of Archimedean copulas is characterized in terms of vector generators. A new characterization of Archimedean copulas is also given by using the notion of a projection of a copula.
Keywords:
shown every archimedean copula there corresponds one parameter semigroup transformations interval elements semigroup diffeomorphisms determines special function called vector generator its knowledge permits finding pseudoinverse additive generator archimedean copula solving differential equation initial condition weak convergence archimedean copulas characterized terms vector generators characterization archimedean copulas given using notion projection copula
Affiliations des auteurs :
Włodzimierz Wysocki 1
@article{10_4064_am31_2_3,
author = {W{\l}odzimierz Wysocki},
title = {Properties of the induced semigroup
of an {Archimedean} copula},
journal = {Applicationes Mathematicae},
pages = {161--174},
year = {2004},
volume = {31},
number = {2},
doi = {10.4064/am31-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am31-2-3/}
}
Włodzimierz Wysocki. Properties of the induced semigroup of an Archimedean copula. Applicationes Mathematicae, Tome 31 (2004) no. 2, pp. 161-174. doi: 10.4064/am31-2-3
Cité par Sources :