A convergence result for evolutionary variational inequalities and applications to antiplane frictional contact problems
Applicationes Mathematicae, Tome 31 (2004) no. 1, pp. 55-67.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider a class of evolutionary variational inequalities depending on a parameter, the so-called viscosity. We recall existence and uniqueness results, both in the viscous and inviscid case. Then we prove that the solution of the inequality involving viscosity converges to the solution of the corresponding inviscid problem as the viscosity converges to zero. Finally, we apply these abstract results in the study of two antiplane quasistatic frictional contact problems with viscoelastic and elastic materials, respectively. For each of the problems we prove the existence of a unique weak solution; we also provide convergence results, together with their mechanical interpretation.
DOI : 10.4064/am31-1-5
Keywords: consider class evolutionary variational inequalities depending parameter so called viscosity recall existence uniqueness results viscous inviscid prove solution inequality involving viscosity converges solution corresponding inviscid problem viscosity converges zero finally apply these abstract results study antiplane quasistatic frictional contact problems viscoelastic elastic materials respectively each problems prove existence unique weak solution provide convergence results together their mechanical interpretation

Mircea Sofonea 1 ; Mohamed Ait Mansour 2

1 Laboratoire de Théorie des Systèmes Université de Perpignan 52 Avenue de Villeneuve 66860 Perpignan, France
2 Laboratoire d'Arithmétique, de Calcul formel et d'Optimisation Université de Limoges 123 Avenue A. Thomas 87060 Limoges, France
@article{10_4064_am31_1_5,
     author = {Mircea Sofonea and Mohamed Ait Mansour},
     title = {A convergence result for evolutionary
 variational inequalities and
 applications to antiplane frictional
 contact problems},
     journal = {Applicationes Mathematicae},
     pages = {55--67},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2004},
     doi = {10.4064/am31-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am31-1-5/}
}
TY  - JOUR
AU  - Mircea Sofonea
AU  - Mohamed Ait Mansour
TI  - A convergence result for evolutionary
 variational inequalities and
 applications to antiplane frictional
 contact problems
JO  - Applicationes Mathematicae
PY  - 2004
SP  - 55
EP  - 67
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am31-1-5/
DO  - 10.4064/am31-1-5
LA  - en
ID  - 10_4064_am31_1_5
ER  - 
%0 Journal Article
%A Mircea Sofonea
%A Mohamed Ait Mansour
%T A convergence result for evolutionary
 variational inequalities and
 applications to antiplane frictional
 contact problems
%J Applicationes Mathematicae
%D 2004
%P 55-67
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am31-1-5/
%R 10.4064/am31-1-5
%G en
%F 10_4064_am31_1_5
Mircea Sofonea; Mohamed Ait Mansour. A convergence result for evolutionary
 variational inequalities and
 applications to antiplane frictional
 contact problems. Applicationes Mathematicae, Tome 31 (2004) no. 1, pp. 55-67. doi : 10.4064/am31-1-5. http://geodesic.mathdoc.fr/articles/10.4064/am31-1-5/

Cité par Sources :