On the existence of positive solutions
of second order neutral difference equations
Applicationes Mathematicae, Tome 31 (2004) no. 1, pp. 5-11
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The neutral delay difference equations of second order with positive and negative coefficients $$ { \Delta } ^2 ( {x_n + p_n x_{n - \tau } } ) + q_n x_{n - \sigma } - r_n x_{n - \lambda } = 0 ,\hskip 1em \ n = 0,1,2,\mathinner {\ldotp \ldotp \ldotp }, $$ is studied, and a sufficient condition for the existence of a positive solution of this equation is obtained.
Keywords:
neutral delay difference equations second order positive negative coefficients delta tau sigma lambda hskip mathinner ldotp ldotp ldotp studied sufficient condition existence positive solution equation obtained
Affiliations des auteurs :
Wen-Xian Lin 1
@article{10_4064_am31_1_2,
author = {Wen-Xian Lin},
title = {On the existence of positive solutions
of second order neutral difference equations},
journal = {Applicationes Mathematicae},
pages = {5--11},
year = {2004},
volume = {31},
number = {1},
doi = {10.4064/am31-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am31-1-2/}
}
TY - JOUR AU - Wen-Xian Lin TI - On the existence of positive solutions of second order neutral difference equations JO - Applicationes Mathematicae PY - 2004 SP - 5 EP - 11 VL - 31 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/am31-1-2/ DO - 10.4064/am31-1-2 LA - en ID - 10_4064_am31_1_2 ER -
Wen-Xian Lin. On the existence of positive solutions of second order neutral difference equations. Applicationes Mathematicae, Tome 31 (2004) no. 1, pp. 5-11. doi: 10.4064/am31-1-2
Cité par Sources :