Stochastic foundations of the universal dielectric response
Applicationes Mathematicae, Tome 30 (2003) no. 3, pp. 325-336.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We present a probabilistic model of the microscopic scenario of dielectric relaxation. We prove a limit theorem for random sums of a special type that appear in the model. By means of the theorem, we show that the presented approach to relaxation phenomena leads to the well known Havriliak–Negami empirical dielectric response provided the physical quantities in the relaxation scheme have heavy-tailed distributions. The mathematical model, presented here in the context of dielectric relaxation, can be applied in the analysis of dynamical properties of other disordered systems.
DOI : 10.4064/am30-3-7
Keywords: present probabilistic model microscopic scenario dielectric relaxation prove limit theorem random sums special type appear model means theorem presented approach relaxation phenomena leads known havriliak negami empirical dielectric response provided physical quantities relaxation scheme have heavy tailed distributions mathematical model presented here context dielectric relaxation applied analysis dynamical properties other disordered systems

Agnieszka Jurlewicz 1

1 Hugo Steinhaus Center for Stochastic Methods and Institute of Mathematics Wrocław University of Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław, Poland
@article{10_4064_am30_3_7,
     author = {Agnieszka Jurlewicz},
     title = {Stochastic foundations
 of the universal dielectric response},
     journal = {Applicationes Mathematicae},
     pages = {325--336},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2003},
     doi = {10.4064/am30-3-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am30-3-7/}
}
TY  - JOUR
AU  - Agnieszka Jurlewicz
TI  - Stochastic foundations
 of the universal dielectric response
JO  - Applicationes Mathematicae
PY  - 2003
SP  - 325
EP  - 336
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am30-3-7/
DO  - 10.4064/am30-3-7
LA  - en
ID  - 10_4064_am30_3_7
ER  - 
%0 Journal Article
%A Agnieszka Jurlewicz
%T Stochastic foundations
 of the universal dielectric response
%J Applicationes Mathematicae
%D 2003
%P 325-336
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am30-3-7/
%R 10.4064/am30-3-7
%G en
%F 10_4064_am30_3_7
Agnieszka Jurlewicz. Stochastic foundations
 of the universal dielectric response. Applicationes Mathematicae, Tome 30 (2003) no. 3, pp. 325-336. doi : 10.4064/am30-3-7. http://geodesic.mathdoc.fr/articles/10.4064/am30-3-7/

Cité par Sources :