Shift invariant operators and
a saturation theorem
Applicationes Mathematicae, Tome 30 (2003) no. 3, pp. 267-286
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The properties of shift invariant operators $Q_h$ are proved: It is shown that $Q$ has polynomial order $r$ iff $r$ is the rate of convergence of $Q_h$. A weak saturation theorem is given. If $f$ is replaced by $Q_hf$ in the weak saturation formula the asymptotics of the expression is calculated. Moreover, bootstrap approximation is introduced.
Keywords:
properties shift invariant operators proved shown has polynomial order rate convergence weak saturation theorem given replaced weak saturation formula asymptotics expression calculated moreover bootstrap approximation introduced
Affiliations des auteurs :
Karol Dziedziul 1
@article{10_4064_am30_3_3,
author = {Karol Dziedziul},
title = {Shift invariant operators and
a saturation theorem},
journal = {Applicationes Mathematicae},
pages = {267--286},
year = {2003},
volume = {30},
number = {3},
doi = {10.4064/am30-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am30-3-3/}
}
Karol Dziedziul. Shift invariant operators and a saturation theorem. Applicationes Mathematicae, Tome 30 (2003) no. 3, pp. 267-286. doi: 10.4064/am30-3-3
Cité par Sources :