Shift invariant operators and a saturation theorem
Applicationes Mathematicae, Tome 30 (2003) no. 3, pp. 267-286.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The properties of shift invariant operators $Q_h$ are proved: It is shown that $Q$ has polynomial order $r$ iff $r$ is the rate of convergence of $Q_h$. A weak saturation theorem is given. If $f$ is replaced by $Q_hf$ in the weak saturation formula the asymptotics of the expression is calculated. Moreover, bootstrap approximation is introduced.
DOI : 10.4064/am30-3-3
Keywords: properties shift invariant operators proved shown has polynomial order rate convergence weak saturation theorem given replaced weak saturation formula asymptotics expression calculated moreover bootstrap approximation introduced

Karol Dziedziul 1

1 Faculty of Applied Mathematics Gdańsk University of Technology G. Narutowicza 11/12 80-952 Gdańsk, Poland
@article{10_4064_am30_3_3,
     author = {Karol Dziedziul},
     title = {Shift invariant operators and
 a saturation theorem},
     journal = {Applicationes Mathematicae},
     pages = {267--286},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2003},
     doi = {10.4064/am30-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am30-3-3/}
}
TY  - JOUR
AU  - Karol Dziedziul
TI  - Shift invariant operators and
 a saturation theorem
JO  - Applicationes Mathematicae
PY  - 2003
SP  - 267
EP  - 286
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am30-3-3/
DO  - 10.4064/am30-3-3
LA  - en
ID  - 10_4064_am30_3_3
ER  - 
%0 Journal Article
%A Karol Dziedziul
%T Shift invariant operators and
 a saturation theorem
%J Applicationes Mathematicae
%D 2003
%P 267-286
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am30-3-3/
%R 10.4064/am30-3-3
%G en
%F 10_4064_am30_3_3
Karol Dziedziul. Shift invariant operators and
 a saturation theorem. Applicationes Mathematicae, Tome 30 (2003) no. 3, pp. 267-286. doi : 10.4064/am30-3-3. http://geodesic.mathdoc.fr/articles/10.4064/am30-3-3/

Cité par Sources :