Estimates for perturbations of
discounted Markov chains on general spaces
Applicationes Mathematicae, Tome 30 (2003) no. 1, pp. 39-53
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We analyse a Markov chain and perturbations of the transition probability and the one-step cost function (possibly unbounded) defined on it. Under certain conditions, of Lyapunov and Harris type, we obtain new estimates of the effects of such perturbations via an
index of perturbations, defined as the difference of the total expected discounted costs between the original Markov chain and the perturbed one. We provide an example which illustrates our analysis.
Keywords:
analyse markov chain perturbations transition probability one step cost function possibly unbounded defined under certain conditions lyapunov harris type obtain estimates effects perturbations via index perturbations defined difference total expected discounted costs between original markov chain perturbed provide example which illustrates analysis
Affiliations des auteurs :
Raúl Montes-de-Oca 1 ; Alexander Sakhanenko 2 ; Francisco Salem-Silva 3
@article{10_4064_am30_1_3,
author = {Ra\'ul Montes-de-Oca and Alexander Sakhanenko and Francisco Salem-Silva},
title = {Estimates for perturbations of
discounted {Markov} chains on general spaces},
journal = {Applicationes Mathematicae},
pages = {39--53},
year = {2003},
volume = {30},
number = {1},
doi = {10.4064/am30-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am30-1-3/}
}
TY - JOUR AU - Raúl Montes-de-Oca AU - Alexander Sakhanenko AU - Francisco Salem-Silva TI - Estimates for perturbations of discounted Markov chains on general spaces JO - Applicationes Mathematicae PY - 2003 SP - 39 EP - 53 VL - 30 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/am30-1-3/ DO - 10.4064/am30-1-3 LA - en ID - 10_4064_am30_1_3 ER -
%0 Journal Article %A Raúl Montes-de-Oca %A Alexander Sakhanenko %A Francisco Salem-Silva %T Estimates for perturbations of discounted Markov chains on general spaces %J Applicationes Mathematicae %D 2003 %P 39-53 %V 30 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/am30-1-3/ %R 10.4064/am30-1-3 %G en %F 10_4064_am30_1_3
Raúl Montes-de-Oca; Alexander Sakhanenko; Francisco Salem-Silva. Estimates for perturbations of discounted Markov chains on general spaces. Applicationes Mathematicae, Tome 30 (2003) no. 1, pp. 39-53. doi: 10.4064/am30-1-3
Cité par Sources :