Gamma minimax nonparametric estimation
Applicationes Mathematicae, Tome 30 (2003) no. 1, pp. 1-10.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $Y$ be a random vector taking its values in a measurable space and let ${\boldsymbol z}$ be a vector-valued function defined on that space. We consider gamma minimax estimation of the unknown expected value ${\boldsymbol p}$ of the random vector ${\boldsymbol z}(Y)$. We assume a weighted squared error loss function.
DOI : 10.4064/am30-1-1
Keywords: random vector taking its values measurable space boldsymbol vector valued function defined space consider gamma minimax estimation unknown expected value boldsymbol random vector boldsymbol assume weighted squared error loss function

Maciej Wilczyński 1

1 Institute of Mathematics Wrocław University of Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław, Poland
@article{10_4064_am30_1_1,
     author = {Maciej Wilczy\'nski},
     title = {Gamma minimax nonparametric estimation},
     journal = {Applicationes Mathematicae},
     pages = {1--10},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2003},
     doi = {10.4064/am30-1-1},
     zbl = {1019.62029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am30-1-1/}
}
TY  - JOUR
AU  - Maciej Wilczyński
TI  - Gamma minimax nonparametric estimation
JO  - Applicationes Mathematicae
PY  - 2003
SP  - 1
EP  - 10
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am30-1-1/
DO  - 10.4064/am30-1-1
LA  - en
ID  - 10_4064_am30_1_1
ER  - 
%0 Journal Article
%A Maciej Wilczyński
%T Gamma minimax nonparametric estimation
%J Applicationes Mathematicae
%D 2003
%P 1-10
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am30-1-1/
%R 10.4064/am30-1-1
%G en
%F 10_4064_am30_1_1
Maciej Wilczyński. Gamma minimax nonparametric estimation. Applicationes Mathematicae, Tome 30 (2003) no. 1, pp. 1-10. doi : 10.4064/am30-1-1. http://geodesic.mathdoc.fr/articles/10.4064/am30-1-1/

Cité par Sources :