Optimal solutions to stochastic differential inclusions
Applicationes Mathematicae, Tome 29 (2002) no. 4, pp. 387-398.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A martingale problem approach is used first to analyze compactness and continuous dependence of the solution set to stochastic differential inclusions of Ito type with convex integrands on the initial distributions. Next the problem of existence of optimal weak solutions to such inclusions and their dependence on the initial distributions is investigated.
DOI : 10.4064/am29-4-2
Keywords: martingale problem approach first analyze compactness continuous dependence solution set stochastic differential inclusions ito type convex integrands initial distributions problem existence optimal weak solutions inclusions their dependence initial distributions investigated

Mariusz Michta 1

1 Institute of Mathematics University of Zielona Góra Podgórna 50 65-246 Zielona Góra, Poland
@article{10_4064_am29_4_2,
     author = {Mariusz Michta},
     title = {Optimal solutions
 to stochastic differential inclusions},
     journal = {Applicationes Mathematicae},
     pages = {387--398},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2002},
     doi = {10.4064/am29-4-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am29-4-2/}
}
TY  - JOUR
AU  - Mariusz Michta
TI  - Optimal solutions
 to stochastic differential inclusions
JO  - Applicationes Mathematicae
PY  - 2002
SP  - 387
EP  - 398
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am29-4-2/
DO  - 10.4064/am29-4-2
LA  - en
ID  - 10_4064_am29_4_2
ER  - 
%0 Journal Article
%A Mariusz Michta
%T Optimal solutions
 to stochastic differential inclusions
%J Applicationes Mathematicae
%D 2002
%P 387-398
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am29-4-2/
%R 10.4064/am29-4-2
%G en
%F 10_4064_am29_4_2
Mariusz Michta. Optimal solutions
 to stochastic differential inclusions. Applicationes Mathematicae, Tome 29 (2002) no. 4, pp. 387-398. doi : 10.4064/am29-4-2. http://geodesic.mathdoc.fr/articles/10.4064/am29-4-2/

Cité par Sources :