Control in obstacle-pseudoplate problems with friction on the boundary. approximate optimal design and worst scenario problems
Applicationes Mathematicae, Tome 29 (2002) no. 1, pp. 75-95.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In addition to the optimal design and worst scenario problems formulated in a previous paper [3], approximate optimization problems are introduced, making use of the finite element method. The solvability of the approximate problems is proved on the basis of a general theorem of [3]. When the mesh size tends to zero, a subsequence of any sequence of approximate solutions converges uniformly to a solution of the continuous problem.
DOI : 10.4064/am29-1-8
Keywords: addition optimal design worst scenario problems formulated previous paper approximate optimization problems introduced making finite element method solvability approximate problems proved basis general theorem mesh size tends zero subsequence sequence approximate solutions converges uniformly solution continuous problem

Ivan Hlaváček 1 ; Ján Lovíšek 2

1 Mathematical Institute Academy of Sciences of the Czech Republic Žitná 25 CZ-115 67 Praha 1, Czech Republic and Institute of Computer Science Pod vodárenskou věží 2 CZ-182 07 Praha 8, Czech Republic
2 Faculty of Civil Engineering Slovak Technical University Radlinského 11 SK-813 68 Bratislava, Slovak Republic
@article{10_4064_am29_1_8,
     author = {Ivan Hlav\'a\v{c}ek and J\'an Lov{\'\i}\v{s}ek},
     title = {Control in obstacle-pseudoplate problems
 with friction on the boundary.
 approximate optimal design
 and worst scenario problems},
     journal = {Applicationes Mathematicae},
     pages = {75--95},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2002},
     doi = {10.4064/am29-1-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am29-1-8/}
}
TY  - JOUR
AU  - Ivan Hlaváček
AU  - Ján Lovíšek
TI  - Control in obstacle-pseudoplate problems
 with friction on the boundary.
 approximate optimal design
 and worst scenario problems
JO  - Applicationes Mathematicae
PY  - 2002
SP  - 75
EP  - 95
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am29-1-8/
DO  - 10.4064/am29-1-8
LA  - en
ID  - 10_4064_am29_1_8
ER  - 
%0 Journal Article
%A Ivan Hlaváček
%A Ján Lovíšek
%T Control in obstacle-pseudoplate problems
 with friction on the boundary.
 approximate optimal design
 and worst scenario problems
%J Applicationes Mathematicae
%D 2002
%P 75-95
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am29-1-8/
%R 10.4064/am29-1-8
%G en
%F 10_4064_am29_1_8
Ivan Hlaváček; Ján Lovíšek. Control in obstacle-pseudoplate problems
 with friction on the boundary.
 approximate optimal design
 and worst scenario problems. Applicationes Mathematicae, Tome 29 (2002) no. 1, pp. 75-95. doi : 10.4064/am29-1-8. http://geodesic.mathdoc.fr/articles/10.4064/am29-1-8/

Cité par Sources :