Control in obstacle-pseudoplate problems
with friction on the boundary.
approximate optimal design
and worst scenario problems
Applicationes Mathematicae, Tome 29 (2002) no. 1, pp. 75-95
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In addition to the optimal design and worst scenario problems formulated in a previous paper [3], approximate optimization problems are introduced, making use of the finite element method. The solvability of the approximate problems is proved on the basis of a general theorem of [3]. When the mesh size tends to zero, a subsequence of any sequence of approximate solutions converges uniformly to a solution of the continuous problem.
Keywords:
addition optimal design worst scenario problems formulated previous paper approximate optimization problems introduced making finite element method solvability approximate problems proved basis general theorem mesh size tends zero subsequence sequence approximate solutions converges uniformly solution continuous problem
Affiliations des auteurs :
Ivan Hlaváček 1 ; Ján Lovíšek 2
@article{10_4064_am29_1_8,
author = {Ivan Hlav\'a\v{c}ek and J\'an Lov{\'\i}\v{s}ek},
title = {Control in obstacle-pseudoplate problems
with friction on the boundary.
approximate optimal design
and worst scenario problems},
journal = {Applicationes Mathematicae},
pages = {75--95},
publisher = {mathdoc},
volume = {29},
number = {1},
year = {2002},
doi = {10.4064/am29-1-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am29-1-8/}
}
TY - JOUR AU - Ivan Hlaváček AU - Ján Lovíšek TI - Control in obstacle-pseudoplate problems with friction on the boundary. approximate optimal design and worst scenario problems JO - Applicationes Mathematicae PY - 2002 SP - 75 EP - 95 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/am29-1-8/ DO - 10.4064/am29-1-8 LA - en ID - 10_4064_am29_1_8 ER -
%0 Journal Article %A Ivan Hlaváček %A Ján Lovíšek %T Control in obstacle-pseudoplate problems with friction on the boundary. approximate optimal design and worst scenario problems %J Applicationes Mathematicae %D 2002 %P 75-95 %V 29 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/am29-1-8/ %R 10.4064/am29-1-8 %G en %F 10_4064_am29_1_8
Ivan Hlaváček; Ján Lovíšek. Control in obstacle-pseudoplate problems with friction on the boundary. approximate optimal design and worst scenario problems. Applicationes Mathematicae, Tome 29 (2002) no. 1, pp. 75-95. doi: 10.4064/am29-1-8
Cité par Sources :