On imbedding theorems for
weighted anisotropic Sobolev spaces
Applicationes Mathematicae, Tome 29 (2002) no. 1, pp. 51-63
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Using the Il'in integral representation of functions, imbedding theorems for weighted anisotropic Sobolev spaces in ${\Bbb E}^n$ are proved. By the weight we assume a power function of the distance from an $(n-2)$-dimensional subspace passing through the domain considered.
Keywords:
using ilin integral representation functions imbedding theorems weighted anisotropic sobolev spaces bbb proved weight assume power function distance n dimensional subspace passing through domain considered
Affiliations des auteurs :
Wojciech M. Zaj/aczkowski 1
@article{10_4064_am29_1_6,
author = {Wojciech M. Zaj/aczkowski},
title = {On imbedding theorems for
weighted anisotropic {Sobolev} spaces},
journal = {Applicationes Mathematicae},
pages = {51--63},
year = {2002},
volume = {29},
number = {1},
doi = {10.4064/am29-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am29-1-6/}
}
Wojciech M. Zaj/aczkowski. On imbedding theorems for weighted anisotropic Sobolev spaces. Applicationes Mathematicae, Tome 29 (2002) no. 1, pp. 51-63. doi: 10.4064/am29-1-6
Cité par Sources :