Observability of control systems for polynomial inputs and genericity
Applicationes Mathematicae, Tome 28 (2001) no. 3, pp. 281-291.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider smooth single-input, two-output systems on a compact manifold $X$. We show that the set of systems that are observable for any polynomial input whose degree is less than or equal to a given bound contains an open and dense subset of the set of smooth systems.
DOI : 10.4064/am28-3-4
Keywords: consider smooth single input two output systems compact manifold set systems observable polynomial input whose degree equal given bound contains dense subset set smooth systems

Philippe Jouan 1

1 Laboratoire R. Salem, UMR CNRS 6085 Université de Rouen, Mathématiques Site Colbert 76821 Mont-Saint-Aignan Cedex, France
@article{10_4064_am28_3_4,
     author = {Philippe Jouan},
     title = {Observability of control systems
for polynomial inputs and genericity},
     journal = {Applicationes Mathematicae},
     pages = {281--291},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2001},
     doi = {10.4064/am28-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am28-3-4/}
}
TY  - JOUR
AU  - Philippe Jouan
TI  - Observability of control systems
for polynomial inputs and genericity
JO  - Applicationes Mathematicae
PY  - 2001
SP  - 281
EP  - 291
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am28-3-4/
DO  - 10.4064/am28-3-4
LA  - en
ID  - 10_4064_am28_3_4
ER  - 
%0 Journal Article
%A Philippe Jouan
%T Observability of control systems
for polynomial inputs and genericity
%J Applicationes Mathematicae
%D 2001
%P 281-291
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am28-3-4/
%R 10.4064/am28-3-4
%G en
%F 10_4064_am28_3_4
Philippe Jouan. Observability of control systems
for polynomial inputs and genericity. Applicationes Mathematicae, Tome 28 (2001) no. 3, pp. 281-291. doi : 10.4064/am28-3-4. http://geodesic.mathdoc.fr/articles/10.4064/am28-3-4/

Cité par Sources :