On orthogonal series estimation of bounded regression functions
Applicationes Mathematicae, Tome 28 (2001) no. 3, pp. 257-270.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The problem of nonparametric estimation of a bounded regression function $f\in L^2([a,b]^d),\ [a,b]\subset {\Bbb R},\ d\geq 1$, using an orthonormal system of functions $e_k,\ k=1,2,\mathinner {\ldotp \ldotp \ldotp },$ is considered in the case when the observations follow the model $Y_i=f(X_i)+\eta _i,\ i=1,\mathinner {\ldotp \ldotp \ldotp },n$, where $X_i$ and $\eta _i$ are i.i.d. copies of independent random variables $X$ and $\eta $, respectively, the distribution of $X$ has density $\varrho $, and $\eta $ has mean zero and finite variance. The estimators are constructed by proper truncation of the function $\hat f_n(x) = \sum _{k=1}^{N(n)}\hat c_ke_k(x)$, where the coefficients $\hat c_1,\mathinner {\ldotp \ldotp \ldotp },\hat c_{N(n)}$ are determined by minimizing the empirical risk $n^{-1}\sum _{i=1}^n(Y_i-\sum _{k=1}^{N(n)}c_ke_k(X_i))^2$. Sufficient conditions for convergence rates of the generalization error $E_X| f(X)-\hat f_n(X)|^2$ are obtained.
DOI : 10.4064/am28-3-2
Keywords: problem nonparametric estimation bounded regression function subset bbb geq using orthonormal system functions mathinner ldotp ldotp ldotp considered observations follow model x eta mathinner ldotp ldotp ldotp where eta copies independent random variables eta respectively distribution has density varrho eta has mean zero finite variance estimators constructed proper truncation function hat sum hat where coefficients hat mathinner ldotp ldotp ldotp hat determined minimizing empirical risk sum i sum sufficient conditions convergence rates generalization error hat obtained

Waldemar Popi/nski 1

1 Department of Survey Design Central Statistical Office Al. Niepodleg/lo/sci 208 00-925 Warszawa, Poland
@article{10_4064_am28_3_2,
     author = {Waldemar Popi/nski},
     title = {On orthogonal series estimation of bounded
regression functions},
     journal = {Applicationes Mathematicae},
     pages = {257--270},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2001},
     doi = {10.4064/am28-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am28-3-2/}
}
TY  - JOUR
AU  - Waldemar Popi/nski
TI  - On orthogonal series estimation of bounded
regression functions
JO  - Applicationes Mathematicae
PY  - 2001
SP  - 257
EP  - 270
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am28-3-2/
DO  - 10.4064/am28-3-2
LA  - en
ID  - 10_4064_am28_3_2
ER  - 
%0 Journal Article
%A Waldemar Popi/nski
%T On orthogonal series estimation of bounded
regression functions
%J Applicationes Mathematicae
%D 2001
%P 257-270
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am28-3-2/
%R 10.4064/am28-3-2
%G en
%F 10_4064_am28_3_2
Waldemar Popi/nski. On orthogonal series estimation of bounded
regression functions. Applicationes Mathematicae, Tome 28 (2001) no. 3, pp. 257-270. doi : 10.4064/am28-3-2. http://geodesic.mathdoc.fr/articles/10.4064/am28-3-2/

Cité par Sources :