On orthogonal series estimation of bounded
regression functions
Applicationes Mathematicae, Tome 28 (2001) no. 3, pp. 257-270
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The problem of nonparametric estimation of a bounded
regression function $f\in L^2([a,b]^d),\ [a,b]\subset {\Bbb R},\
d\geq 1$, using an orthonormal system of functions $e_k,\
k=1,2,\mathinner {\ldotp \ldotp \ldotp },$ is considered in the
case when the observations follow the model $Y_i=f(X_i)+\eta
_i,\ i=1,\mathinner {\ldotp \ldotp \ldotp },n$, where $X_i$ and
$\eta _i$ are i.i.d. copies of independent random variables $X$
and $\eta $, respectively, the distribution of $X$ has density
$\varrho $, and $\eta $ has mean zero and finite variance. The
estimators are constructed by proper truncation of the function
$\hat f_n(x) = \sum _{k=1}^{N(n)}\hat
c_ke_k(x)$, where the coefficients $\hat
c_1,\mathinner {\ldotp \ldotp \ldotp },\hat
c_{N(n)}$ are determined by minimizing the empirical risk
$n^{-1}\sum _{i=1}^n(Y_i-\sum _{k=1}^{N(n)}c_ke_k(X_i))^2$.
Sufficient conditions for convergence rates of the
generalization error $E_X| f(X)-\hat
f_n(X)|^2$ are obtained.
Keywords:
problem nonparametric estimation bounded regression function subset bbb geq using orthonormal system functions mathinner ldotp ldotp ldotp considered observations follow model x eta mathinner ldotp ldotp ldotp where eta copies independent random variables eta respectively distribution has density varrho eta has mean zero finite variance estimators constructed proper truncation function hat sum hat where coefficients hat mathinner ldotp ldotp ldotp hat determined minimizing empirical risk sum i sum sufficient conditions convergence rates generalization error hat obtained
Affiliations des auteurs :
Waldemar Popi/nski 1
@article{10_4064_am28_3_2,
author = {Waldemar Popi/nski},
title = {On orthogonal series estimation of bounded
regression functions},
journal = {Applicationes Mathematicae},
pages = {257--270},
year = {2001},
volume = {28},
number = {3},
doi = {10.4064/am28-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am28-3-2/}
}
Waldemar Popi/nski. On orthogonal series estimation of bounded regression functions. Applicationes Mathematicae, Tome 28 (2001) no. 3, pp. 257-270. doi: 10.4064/am28-3-2
Cité par Sources :