Polynomials associated with exponential regression
Applicationes Mathematicae, Tome 28 (2001) no. 3, pp. 247-255.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Fitting exponentials $a+be^{cx}$ to data by the least squares method is discussed. It is shown how the polynomials associated with this problem can be factored. The closure of the set of this type of functions defined on a finite domain is characterized and an existence theorem derived.
DOI : 10.4064/am28-3-1
Keywords: fitting exponentials least squares method discussed shown polynomials associated problem factored closure set type functions defined finite domain characterized existence theorem derived

J. Bukac 1

1 Bulharska 298 55102 Jaromer-Josefov Czech Republic
@article{10_4064_am28_3_1,
     author = {J. Bukac},
     title = {Polynomials associated with
exponential regression},
     journal = {Applicationes Mathematicae},
     pages = {247--255},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2001},
     doi = {10.4064/am28-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am28-3-1/}
}
TY  - JOUR
AU  - J. Bukac
TI  - Polynomials associated with
exponential regression
JO  - Applicationes Mathematicae
PY  - 2001
SP  - 247
EP  - 255
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am28-3-1/
DO  - 10.4064/am28-3-1
LA  - en
ID  - 10_4064_am28_3_1
ER  - 
%0 Journal Article
%A J. Bukac
%T Polynomials associated with
exponential regression
%J Applicationes Mathematicae
%D 2001
%P 247-255
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am28-3-1/
%R 10.4064/am28-3-1
%G en
%F 10_4064_am28_3_1
J. Bukac. Polynomials associated with
exponential regression. Applicationes Mathematicae, Tome 28 (2001) no. 3, pp. 247-255. doi : 10.4064/am28-3-1. http://geodesic.mathdoc.fr/articles/10.4064/am28-3-1/

Cité par Sources :