On the probabilistic
multichain Poisson equation
Applicationes Mathematicae, Tome 28 (2001) no. 2, pp. 225-243
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
This paper introduces necessary and//or sufficient conditions
for the existence of solutions $(g,h)$ to the probabilistic
multichain Poisson equation $$\hbox {(a) }\ g=Pg\hskip 1em
\hbox{and}\hskip 1em \hbox {(b) }\ g+h-Ph=f,$$ with a
given charge $f$, where $P$ is a Markov kernel (or transition
probability function) on a general measurable space. The
existence conditions are derived via three different approaches,
using (1) canonical pairs, (2) Cesàro averages, and
(3) resolvents.
Mots-clés :
paper introduces necessary sufficient conditions existence solutions probabilistic multichain poisson equation hbox hskip hbox hskip hbox h ph given charge where markov kernel transition probability function general measurable space existence conditions derived via three different approaches using canonical pairs ces averages resolvents
Affiliations des auteurs :
Onésimo Hernández-Lerma 1 ; Jean B. Lasserre 2
@article{10_4064_am28_2_8,
author = {On\'esimo Hern\'andez-Lerma and Jean B. Lasserre},
title = {On the probabilistic
multichain {Poisson} equation},
journal = {Applicationes Mathematicae},
pages = {225--243},
year = {2001},
volume = {28},
number = {2},
doi = {10.4064/am28-2-8},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am28-2-8/}
}
TY - JOUR AU - Onésimo Hernández-Lerma AU - Jean B. Lasserre TI - On the probabilistic multichain Poisson equation JO - Applicationes Mathematicae PY - 2001 SP - 225 EP - 243 VL - 28 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/am28-2-8/ DO - 10.4064/am28-2-8 LA - fr ID - 10_4064_am28_2_8 ER -
Onésimo Hernández-Lerma; Jean B. Lasserre. On the probabilistic multichain Poisson equation. Applicationes Mathematicae, Tome 28 (2001) no. 2, pp. 225-243. doi: 10.4064/am28-2-8
Cité par Sources :