Median for metric spaces
Applicationes Mathematicae, Tome 28 (2001) no. 2, pp. 191-209.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider a Köthe space $({\Bbb E}, \| \cdot \| _{{\Bbb E}})$ of random variables (r.v.) defined on the Lebesgue space $([0,1], {\bf B},\lambda )$. We show that for any sub-$\sigma $-algebra $\mathscr F$ of ${\bf B}$ and for all r.v.'s $X$ with values in a separable finitely compact metric space $(M,d)$ such that $d(X, x)\in {\Bbb E}$ for all $x\in M$ (we then write $X\in {\Bbb E}(M)$), there exists a median of $X$ given $\mathscr F$, i.e., an $\mathscr F$-measurable r.v. $Y\in {\Bbb E}(M)$ such that $\| d(X,Y)\| _{{\Bbb E}} \leq \| d(X,Z)\| _{{\Bbb E}}$ for all $\mathscr F$-measurable $Z$. We develop the basic theory of these medians, we show the convergence of empirical medians and we give some applications.
DOI : 10.4064/am28-2-6
Keywords: consider space bbb cdot bbb random variables defined lebesgue space lambda sub sigma algebra mathscr x values separable finitely compact metric space bbb write bbb there exists median given mathscr mathscr f measurable bbb bbb leq bbb mathscr f measurable develop basic theory these medians convergence empirical medians applications

Nacereddine Belili 1 ; Henri Heinich 2

1 UPRES-A 6085 Analyse et Modèles Stochastiques Université de Rouen 76821 Mont-Saint-Aignan Cedex, France
2 UPRES-A 6085, INSA de Rouen Département de Génie Mathématiques Place E. Blondel 76131 Mont-Saint-Aignan, France
@article{10_4064_am28_2_6,
     author = {Nacereddine Belili and Henri Heinich},
     title = {Median for metric spaces},
     journal = {Applicationes Mathematicae},
     pages = {191--209},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2001},
     doi = {10.4064/am28-2-6},
     zbl = {1006.60001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am28-2-6/}
}
TY  - JOUR
AU  - Nacereddine Belili
AU  - Henri Heinich
TI  - Median for metric spaces
JO  - Applicationes Mathematicae
PY  - 2001
SP  - 191
EP  - 209
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am28-2-6/
DO  - 10.4064/am28-2-6
LA  - en
ID  - 10_4064_am28_2_6
ER  - 
%0 Journal Article
%A Nacereddine Belili
%A Henri Heinich
%T Median for metric spaces
%J Applicationes Mathematicae
%D 2001
%P 191-209
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am28-2-6/
%R 10.4064/am28-2-6
%G en
%F 10_4064_am28_2_6
Nacereddine Belili; Henri Heinich. Median for metric spaces. Applicationes Mathematicae, Tome 28 (2001) no. 2, pp. 191-209. doi : 10.4064/am28-2-6. http://geodesic.mathdoc.fr/articles/10.4064/am28-2-6/

Cité par Sources :