Median for metric spaces
Applicationes Mathematicae, Tome 28 (2001) no. 2, pp. 191-209
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider a Köthe space $({\Bbb E}, \|
\cdot \| _{{\Bbb E}})$ of random
variables (r.v.) defined on the Lebesgue space $([0,1], {\bf
B},\lambda )$. We show that for any sub-$\sigma $-algebra
$\mathscr F$ of ${\bf B}$ and
for all r.v.'s $X$ with values in a separable finitely compact
metric space $(M,d)$ such that $d(X, x)\in {\Bbb E}$ for all
$x\in M$ (we then write $X\in {\Bbb E}(M)$), there exists a
median of $X$ given $\mathscr F$, i.e., an
$\mathscr F$-measurable r.v. $Y\in {\Bbb E}(M)$
such that $\| d(X,Y)\| _{{\Bbb
E}} \leq \| d(X,Z)\| _{{\Bbb
E}}$ for all $\mathscr F$-measurable $Z$. We
develop the basic theory of these medians, we show the
convergence of empirical medians and we give some
applications.
DOI :
10.4064/am28-2-6
Keywords:
consider space bbb cdot bbb random variables defined lebesgue space lambda sub sigma algebra mathscr x values separable finitely compact metric space bbb write bbb there exists median given mathscr mathscr f measurable bbb bbb leq bbb mathscr f measurable develop basic theory these medians convergence empirical medians applications
Affiliations des auteurs :
Nacereddine Belili 1 ; Henri Heinich 2
@article{10_4064_am28_2_6,
author = {Nacereddine Belili and Henri Heinich},
title = {Median for metric spaces},
journal = {Applicationes Mathematicae},
pages = {191--209},
year = {2001},
volume = {28},
number = {2},
doi = {10.4064/am28-2-6},
zbl = {1006.60001},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am28-2-6/}
}
Nacereddine Belili; Henri Heinich. Median for metric spaces. Applicationes Mathematicae, Tome 28 (2001) no. 2, pp. 191-209. doi: 10.4064/am28-2-6
Cité par Sources :