On the weighted Euclidean
matching problem in ${\Bbb R}^d$
Applicationes Mathematicae, Tome 28 (2001) no. 2, pp. 181-190
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
A partitioning algorithm for the Euclidean matching problem
in ${\Bbb R}^d$ is introduced and analyzed in a probabilistic
model. The algorithm uses elements from the fixed dissection
algorithm of Karp and Steele (1985) and the
Zig-Zag algorithm of Halton and Terada (1982) for
the traveling salesman problem. The algorithm runs in expected
time $n(\log n)^{p-1}$ and approximates the optimal matching in
the probabilistic sense.
Keywords:
partitioning algorithm euclidean matching problem bbb introduced analyzed probabilistic model algorithm uses elements fixed dissection algorithm karp steele zig zag algorithm halton terada traveling salesman problem algorithm runs expected time log p approximates optimal matching probabilistic sense
Affiliations des auteurs :
Birgit Anthes 1 ; Ludger Rüschendorf 1
@article{10_4064_am28_2_5,
author = {Birgit Anthes and Ludger R\"uschendorf},
title = {On the weighted {Euclidean
matching} problem in ${\Bbb R}^d$},
journal = {Applicationes Mathematicae},
pages = {181--190},
year = {2001},
volume = {28},
number = {2},
doi = {10.4064/am28-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am28-2-5/}
}
TY - JOUR
AU - Birgit Anthes
AU - Ludger Rüschendorf
TI - On the weighted Euclidean
matching problem in ${\Bbb R}^d$
JO - Applicationes Mathematicae
PY - 2001
SP - 181
EP - 190
VL - 28
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/am28-2-5/
DO - 10.4064/am28-2-5
LA - en
ID - 10_4064_am28_2_5
ER -
Birgit Anthes; Ludger Rüschendorf. On the weighted Euclidean
matching problem in ${\Bbb R}^d$. Applicationes Mathematicae, Tome 28 (2001) no. 2, pp. 181-190. doi: 10.4064/am28-2-5
Cité par Sources :