Self-avoiding walks on the lattice ${\Bbb Z}^2$
with the 8-neighbourhood system
Applicationes Mathematicae, Tome 28 (2001) no. 2, pp. 169-180
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
This paper deals with the properties of self-avoiding walks
defined on the lattice with the 8-neighbourhood system. We
compute the number of walks, bridges and mean-square
displacement for $N=1$ through 13 ($N$ is the number of steps
of the self-avoiding walk). We also estimate the connective
constant and critical exponents, and study finite memory and
generating functions. We show applications of this kind of walk.
In addition, we compute upper bounds for the number of walks and
the connective constant.
Keywords:
paper deals properties self avoiding walks defined lattice neighbourhood system compute number walks bridges mean square displacement through number steps self avoiding walk estimate connective constant critical exponents study finite memory generating functions applications kind walk addition compute upper bounds number walks connective constant
Affiliations des auteurs :
Andrzej Chydzi/nski 1 ; Bogdan Smo/lka 2
@article{10_4064_am28_2_4,
author = {Andrzej Chydzi/nski and Bogdan Smo/lka},
title = {Self-avoiding walks on the lattice ${\Bbb Z}^2$
with the 8-neighbourhood system},
journal = {Applicationes Mathematicae},
pages = {169--180},
year = {2001},
volume = {28},
number = {2},
doi = {10.4064/am28-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am28-2-4/}
}
TY - JOUR
AU - Andrzej Chydzi/nski
AU - Bogdan Smo/lka
TI - Self-avoiding walks on the lattice ${\Bbb Z}^2$
with the 8-neighbourhood system
JO - Applicationes Mathematicae
PY - 2001
SP - 169
EP - 180
VL - 28
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/am28-2-4/
DO - 10.4064/am28-2-4
LA - en
ID - 10_4064_am28_2_4
ER -
%0 Journal Article
%A Andrzej Chydzi/nski
%A Bogdan Smo/lka
%T Self-avoiding walks on the lattice ${\Bbb Z}^2$
with the 8-neighbourhood system
%J Applicationes Mathematicae
%D 2001
%P 169-180
%V 28
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/am28-2-4/
%R 10.4064/am28-2-4
%G en
%F 10_4064_am28_2_4
Andrzej Chydzi/nski; Bogdan Smo/lka. Self-avoiding walks on the lattice ${\Bbb Z}^2$
with the 8-neighbourhood system. Applicationes Mathematicae, Tome 28 (2001) no. 2, pp. 169-180. doi: 10.4064/am28-2-4
Cité par Sources :