On a new method for enlarging the
radius of convergence for Newton's method
Applicationes Mathematicae, Tome 28 (2001) no. 1, pp. 1-15
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We provide new local and semilocal convergence results for
Newton's method. We introduce Lipschitz-type hypotheses on the
$m$th-Frechet derivative. This way we
manage to enlarge the radius of convergence of Newton's method.
Numerical examples are also provided to show that our results
guarantee convergence where others do not.
Keywords:
provide local semilocal convergence results newtons method introduce lipschitz type hypotheses mth frechet derivative manage enlarge radius convergence newtons method numerical examples provided results guarantee convergence where others
Affiliations des auteurs :
Ioannis K. Argyros 1
@article{10_4064_am28_1_1,
author = {Ioannis K. Argyros},
title = {On a new method for enlarging the
radius of convergence for {Newton's} method},
journal = {Applicationes Mathematicae},
pages = {1--15},
year = {2001},
volume = {28},
number = {1},
doi = {10.4064/am28-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am28-1-1/}
}
TY - JOUR AU - Ioannis K. Argyros TI - On a new method for enlarging the radius of convergence for Newton's method JO - Applicationes Mathematicae PY - 2001 SP - 1 EP - 15 VL - 28 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/am28-1-1/ DO - 10.4064/am28-1-1 LA - en ID - 10_4064_am28_1_1 ER -
Ioannis K. Argyros. On a new method for enlarging the radius of convergence for Newton's method. Applicationes Mathematicae, Tome 28 (2001) no. 1, pp. 1-15. doi: 10.4064/am28-1-1
Cité par Sources :