Improved conjugate gradient methods and application to nonparametric estimation
Applicationes Mathematicae, Tome 51 (2024) no. 2, pp. 147-161.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The conjugate gradient (CG) method is one of the most important ideas in scientific computing, applied to solving linear systems of equations and nonlinear optimization problems. In this paper, based on a variant of Dai–Yuan (DY) method and Fletcher–Reeves (FR) method, two modified CG methods (named IDY and IFR) are presented and analyzed. The search direction of the presented methods fulfills the sufficient descent condition at each iteration. We establish the global convergence of the proposed algorithms under normal assumptions and strong Wolfe line search. Preliminary elementary numerical experiment results are presented, demonstrating the effectiveness of the methods. Finally, the methods are extended to solve the problem of conditional model regression function.
DOI : 10.4064/am2512-6-2024
Keywords: conjugate gradient method important ideas scientific computing applied solving linear systems equations nonlinear optimization problems paper based variant dai yuan method fletcher reeves method modified methods named idy ifr presented analyzed search direction presented methods fulfills sufficient descent condition each iteration establish global convergence proposed algorithms under normal assumptions strong wolfe line search preliminary elementary numerical experiment results presented demonstrating effectiveness methods finally methods extended solve problem conditional model regression function

Abd Elhamid Mehamdia 1 ; Yacine Chaib 1

1 Laboratory Informatics and Mathematics Mohamed Cherif Messaadia University Souk Ahras, 41000, Algeria
@article{10_4064_am2512_6_2024,
     author = {Abd Elhamid Mehamdia and Yacine Chaib},
     title = {Improved conjugate gradient methods and application to nonparametric estimation},
     journal = {Applicationes Mathematicae},
     pages = {147--161},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2024},
     doi = {10.4064/am2512-6-2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am2512-6-2024/}
}
TY  - JOUR
AU  - Abd Elhamid Mehamdia
AU  - Yacine Chaib
TI  - Improved conjugate gradient methods and application to nonparametric estimation
JO  - Applicationes Mathematicae
PY  - 2024
SP  - 147
EP  - 161
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am2512-6-2024/
DO  - 10.4064/am2512-6-2024
LA  - en
ID  - 10_4064_am2512_6_2024
ER  - 
%0 Journal Article
%A Abd Elhamid Mehamdia
%A Yacine Chaib
%T Improved conjugate gradient methods and application to nonparametric estimation
%J Applicationes Mathematicae
%D 2024
%P 147-161
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am2512-6-2024/
%R 10.4064/am2512-6-2024
%G en
%F 10_4064_am2512_6_2024
Abd Elhamid Mehamdia; Yacine Chaib. Improved conjugate gradient methods and application to nonparametric estimation. Applicationes Mathematicae, Tome 51 (2024) no. 2, pp. 147-161. doi : 10.4064/am2512-6-2024. http://geodesic.mathdoc.fr/articles/10.4064/am2512-6-2024/

Cité par Sources :