On the $(m,t)$-extension dual complex Fibonacci $p$-numbers
Applicationes Mathematicae, Tome 51 (2024) no. 1, pp. 95-108
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We introduce $(m,t)$-extension dual complex Fibonacci $p$-numbers and we establish some of their properties. They are connected to complex Fibonacci numbers, complex Fibonacci $p$-numbers, $m$-extension dual complex Fibonacci $p$-numbers and dual complex Fibonacci $p$-numbers.
Keywords:
introduce extension dual complex fibonacci p numbers establish their properties connected complex fibonacci numbers complex fibonacci p numbers m extension dual complex fibonacci p numbers dual complex fibonacci p numbers
Affiliations des auteurs :
Bandhu Prasad 1
@article{10_4064_am2464_3_2024,
author = {Bandhu Prasad},
title = {On the $(m,t)$-extension dual complex {Fibonacci} $p$-numbers},
journal = {Applicationes Mathematicae},
pages = {95--108},
year = {2024},
volume = {51},
number = {1},
doi = {10.4064/am2464-3-2024},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am2464-3-2024/}
}
Bandhu Prasad. On the $(m,t)$-extension dual complex Fibonacci $p$-numbers. Applicationes Mathematicae, Tome 51 (2024) no. 1, pp. 95-108. doi: 10.4064/am2464-3-2024
Cité par Sources :