Extended efficient high convergence order schemes for equations
Applicationes Mathematicae, Tome 50 (2023) no. 2, pp. 177-187.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We investigate the ball of convergence using only the first derivative for two sixth order algorithms for solving equations that are run under the equal set of circumstances. In addition, we provide a calculable ball comparison between the two schemes under consideration. Our technique is based on the first derivative that only appears in the schemes.
DOI : 10.4064/am2444-2-2023
Keywords: investigate ball convergence using only first derivative sixth order algorithms solving equations run under equal set circumstances addition provide calculable ball comparison between schemes under consideration technique based first derivative only appears schemes

Ioannis K. Argyros 1 ; Debasis Sharma 2 ; Christopher I. Argyros 3

1 Department of Mathematics Sciences Cameron University Lawton, OK 73505, USA <a href="https://orcid.org/0000-0003-1609-3195">ORCID: 0000-0003-1609-3195</a>
2 Department of Mathematics Kalinga Institute of Industrial Technology Bhubaneswar, Odisha, 751024, India <a href="https://orcid.org/0000-0001-8456-6391">ORCID: 0000-0001-8456-6391</a>
3 Department of Computing and Technology Cameron University Lawton, OK 73505, USA <a href="https://orcid.org/0000-0002-7647-3571">ORCID: 0000-0002-7647-3571</a>
@article{10_4064_am2444_2_2023,
     author = {Ioannis K. Argyros and Debasis Sharma and Christopher I. Argyros},
     title = {Extended efficient high convergence order schemes for equations},
     journal = {Applicationes Mathematicae},
     pages = {177--187},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2023},
     doi = {10.4064/am2444-2-2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am2444-2-2023/}
}
TY  - JOUR
AU  - Ioannis K. Argyros
AU  - Debasis Sharma
AU  - Christopher I. Argyros
TI  - Extended efficient high convergence order schemes for equations
JO  - Applicationes Mathematicae
PY  - 2023
SP  - 177
EP  - 187
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am2444-2-2023/
DO  - 10.4064/am2444-2-2023
LA  - en
ID  - 10_4064_am2444_2_2023
ER  - 
%0 Journal Article
%A Ioannis K. Argyros
%A Debasis Sharma
%A Christopher I. Argyros
%T Extended efficient high convergence order schemes for equations
%J Applicationes Mathematicae
%D 2023
%P 177-187
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am2444-2-2023/
%R 10.4064/am2444-2-2023
%G en
%F 10_4064_am2444_2_2023
Ioannis K. Argyros; Debasis Sharma; Christopher I. Argyros. Extended efficient high convergence order schemes for equations. Applicationes Mathematicae, Tome 50 (2023) no. 2, pp. 177-187. doi : 10.4064/am2444-2-2023. http://geodesic.mathdoc.fr/articles/10.4064/am2444-2-2023/

Cité par Sources :