Extending the applicability of a seventh-order method for equations under generalized conditions
Applicationes Mathematicae, Tome 50 (2023) no. 2, pp. 167-175.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We extend the applicability of a seventh-order method for solving Banach space-valued equations. This is achieved by using generalized conditions on the first derivative which only appears in the method. Earlier works use conditions up to the eighth derivative to establish convergence. Our technique is very general and can be used to extend the applicability of other methods along the same lines.
DOI : 10.4064/am2439-2-2023
Keywords: extend applicability seventh order method solving banach space valued equations achieved using generalized conditions first derivative which only appears method earlier works conditions eighth derivative establish convergence technique general extend applicability other methods along lines

Samundra Regmi 1 ; Ioannis K. Argyros 2 ; Santhosh George 3 ; Christopher Argyros 4

1 Department of Mathematics University of Houston Houston, TX 77204, USA <a href="https://orcid.org/0000-0003-0035-1022">ORCID: 0000-0003-0035-1022</a>
2 Department of Computing and Mathematical Sciences Cameron University Lawton, OK 73505, USA <a href="https://orcid.org/0000-0003-1609-3195">ORCID: 0000-0003-1609-3195</a>
3 Department of Mathematical and Computational Sciences National Institute of Technology Karnataka Mangalore, Karnataka, India 575025 <a href="https://orcid.org/0000-0002-3530-5539">ORCID: 0000-0002-3530-5539</a>
4 Department of Computing and Mathematical Sciences Cameron University Lawton, OK 73505, USA <a href="https://orcid.org/0000-0002-7647-3571">ORCID: 0000-0002-7647-3571</a>
@article{10_4064_am2439_2_2023,
     author = {Samundra Regmi and Ioannis K. Argyros and Santhosh George and Christopher Argyros},
     title = {Extending the applicability of a seventh-order method for equations under generalized conditions},
     journal = {Applicationes Mathematicae},
     pages = {167--175},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2023},
     doi = {10.4064/am2439-2-2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am2439-2-2023/}
}
TY  - JOUR
AU  - Samundra Regmi
AU  - Ioannis K. Argyros
AU  - Santhosh George
AU  - Christopher Argyros
TI  - Extending the applicability of a seventh-order method for equations under generalized conditions
JO  - Applicationes Mathematicae
PY  - 2023
SP  - 167
EP  - 175
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am2439-2-2023/
DO  - 10.4064/am2439-2-2023
LA  - en
ID  - 10_4064_am2439_2_2023
ER  - 
%0 Journal Article
%A Samundra Regmi
%A Ioannis K. Argyros
%A Santhosh George
%A Christopher Argyros
%T Extending the applicability of a seventh-order method for equations under generalized conditions
%J Applicationes Mathematicae
%D 2023
%P 167-175
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am2439-2-2023/
%R 10.4064/am2439-2-2023
%G en
%F 10_4064_am2439_2_2023
Samundra Regmi; Ioannis K. Argyros; Santhosh George; Christopher Argyros. Extending the applicability of a seventh-order method for equations under generalized conditions. Applicationes Mathematicae, Tome 50 (2023) no. 2, pp. 167-175. doi : 10.4064/am2439-2-2023. http://geodesic.mathdoc.fr/articles/10.4064/am2439-2-2023/

Cité par Sources :