Extended comparison between two Newton–Jarratt sixth order schemes for nonlinear models under the same set of conditions
Applicationes Mathematicae, Tome 50 (2023) no. 1, pp. 67-79.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Two sixth order convergence order schemes are compared and extended to solve Banach space valued models. Earlier studies have used derivatives and Taylor expansions up to order seven to show the convergence order in a finite-dimensional Euclidean space setting. We compute the order by finding computational convergence order or approximate computational convergence order, and condition only on the derivative that is present in the schemes. Moreover, a computable convergence radius, upper error bounds and uniqueness of the solution are provided. Numerical applications illustrate the theoretical results.
DOI : 10.4064/am2437-2-2023
Keywords: sixth order convergence order schemes compared extended solve banach space valued models earlier studies have derivatives taylor expansions order seven convergence order finite dimensional euclidean space setting compute order finding computational convergence order approximate computational convergence order condition only derivative present schemes moreover computable convergence radius upper error bounds uniqueness solution provided numerical applications illustrate theoretical results

Janak Raj Sharma 1 ; Sunil Kumar 2 ; Ioannis K. Argyros 3 ; Christopher I. Argyros 4

1 Department of Mathematics Sant Longowal Institute of Engineering and Technology Longowal, Sangrur 148106, India <a href="https://orcid.org/0000-0002-4627-2795">ORCID: 0000-0002-4627-2795</a>
2 Department of Mathematics Amrita School of Engineering Amrita Vishwa Vidyapeetham Chennai 601103, India <a href="https://orcid.org/0000-0002-0878-1804">ORCID: 0000-0002-0878-1804</a>
3 Department of Mathematical Sciences Cameron University Lawton, OK 73505, USA <a href="https://orcid.org/0000-0003-1609-3195">ORCID: 0000-0003-1609-3195</a>
4 Department of Computing and Technology Cameron University Lawton, OK 73505, USA <a href="https://orcid.org/0000-0002-7647-3571">ORCID: 0000-0002-7647-3571</a>
@article{10_4064_am2437_2_2023,
     author = {Janak Raj Sharma and Sunil Kumar and Ioannis K. Argyros and Christopher I. Argyros},
     title = {Extended comparison between two {Newton{\textendash}Jarratt} sixth order schemes for nonlinear models under the same set of conditions},
     journal = {Applicationes Mathematicae},
     pages = {67--79},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2023},
     doi = {10.4064/am2437-2-2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/am2437-2-2023/}
}
TY  - JOUR
AU  - Janak Raj Sharma
AU  - Sunil Kumar
AU  - Ioannis K. Argyros
AU  - Christopher I. Argyros
TI  - Extended comparison between two Newton–Jarratt sixth order schemes for nonlinear models under the same set of conditions
JO  - Applicationes Mathematicae
PY  - 2023
SP  - 67
EP  - 79
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/am2437-2-2023/
DO  - 10.4064/am2437-2-2023
LA  - en
ID  - 10_4064_am2437_2_2023
ER  - 
%0 Journal Article
%A Janak Raj Sharma
%A Sunil Kumar
%A Ioannis K. Argyros
%A Christopher I. Argyros
%T Extended comparison between two Newton–Jarratt sixth order schemes for nonlinear models under the same set of conditions
%J Applicationes Mathematicae
%D 2023
%P 67-79
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am2437-2-2023/
%R 10.4064/am2437-2-2023
%G en
%F 10_4064_am2437_2_2023
Janak Raj Sharma; Sunil Kumar; Ioannis K. Argyros; Christopher I. Argyros. Extended comparison between two Newton–Jarratt sixth order schemes for nonlinear models under the same set of conditions. Applicationes Mathematicae, Tome 50 (2023) no. 1, pp. 67-79. doi : 10.4064/am2437-2-2023. http://geodesic.mathdoc.fr/articles/10.4064/am2437-2-2023/

Cité par Sources :